
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for r
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for informatio
1204, Arlington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188) Ws

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

July 1996
3. REPORT TYPE

Final

AFRL-SR-BL-TR-98-

6Z(£>k>
4. TITLE AND SUBTITLE

Retiming, Folding, and Register Minimization for DSP Synthesis

6. AUTHORS

Tracy Carroll Denk

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Minnesota
8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NI
110 Duncan Avenue, Room B-115
Boiling Air Force Base, DC 20332-8080

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

See attached.

DISTRIBUTION STATEMENT^

Approved for public release;
Distribution Unlimited

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

(
17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

DTIC QUALITY INSPECTED 3 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239.18

Designed using WordPerfect 6.1. AFOSR/XPP. Oct 96

Abstract

This thesis introduces some formal techniques which can be used for synthesis of VLSI

(very large scale integration) architectures for DSP (digital signal processing) algorithms.

These techniques can be used to design architectures for single-rate/single-dimensional

DSP, multirate/single-dimensional DSP, and single-rate/multi-dimensional DSP.

For single-rate/single-dimensional DSP, we have developed a novel technique for ex-

haustively generating all retiming and scheduling solutions for the DSP algorithm. The

significance of this contribution is two-fold. First, it allows a circuit designer to explore

a large space of possible high-level implementations for the algorithm, which allows the

designer to make a good decision about the high-level architectural details of the de-

sign. Second, this work explicitly shows the important interaction between retiming and

scheduling in high-level synthesis. While retiming and scheduling have been treated as

separate problems in the past, our work uses a mathematical framework to show that

retiming is a special case of scheduling.

Also for single-rate/single-dimensional DSP, we have developed techniques for com-

puting the minimum number of registers required to implement a statically scheduled

DSP program. Closed-form expressions are derived for computing the minimum number

of registers assuming various memory models with or without retiming the scheduled

DFG. This is an important problem because memory typically occupies a large portion

of the area of a DSP implementation (often over half of the area), and minimizing this

area leads to more efficient designs.

For multirate/single-dimensional DSP, we have developed a multirate folding tech-

nique which can be used to synthesize single-rate architectures from multirate DSP

algorithms. Prior to the development of this formal technique, the design of single-rate

architectures for multi-rate DSP algorithms was performed using ad hoc design tech-

niques.

For single-rate/multi-dimensional DSP, we have developed two techniques for retim-

ing two-dimensional data-flow graphs. These techniques are designed to minimize the

memory requirements under a given clock period constraint. These techniques can result

in retimed circuits which use less than 50% of the memory required by previously used

techniques. I

UNIVERSITY OF MINNESOTA

This is to certify that I have examined this bound copy of a doctoral thesis by

Tracy Carroll Denk

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Keshab K. Parhi

Name of Faculty Adviser

"\^fcf*~Ll
Signature of Faculty Adviser

T**Jys mk
Date

GRADUATE SCHOOL

VDHC QUALITY mSEBCTBD S

Retiming, Folding, and Register Minimization for DSP Synthesis

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Tracy Carroll Denk

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

July 1996

19980430 164

© Tracy Carroll Denk 1996

Acknowledgement

I wish to thank my advisor, Professor Keshab K. Parhi, for his guidance, patience, and

support since my days as an undergraduate at Minnesota. I am grateful for the many

valuable lessons I have learned from him throughout the years. It has certainly been a

privilege and a pleasure to work with Dr. Parhi. I would also like to thank the members

of my examining committee - Professor Cherkassky, Professor Tewfik, Professor Carlis,

and Professor Papanikolopoulos - for supporting my work.

I would like to thank the Air Force and the Advanced Research Projects Agency

for supporting me in parts through an Air Force Laboratory Graduate Fellowship and

a grant from the Advanced Research Projects Agency and the Solid State Electronics

Directorate, Wright-Patterson AFB (contract number AF/F33615-93-C-1309).

I would like to thank several people for their help with the work in this thesis. I

thank Dr. Ching-Yi Wang and Dr. Kazuhito Ito for generating schedules for the register

minimization work. I thank John Bratt for many helpful discussions on the exhaustive

retiming and scheduling work, and I thank Mayukh Majumdar for helping to work out

some of the two-dimensional retiming details. I also thank Dr. Ching-Yi Wang and

Chong Xu for helpful discussions on the topic of multirate folding. The help of these and

several other talented people made working on this thesis a very enjoyable experience.

I am very grateful to my parents, to whom this thesis is dedicated, for their abundant

love, guidance, encouragement, and support throughout the years. I will never be able

to thank them enough. Hats off to you, Bruce and Cindy! I am also grateful to the rest

of my family for their support. I am particularly glad that my grandparents, RC and

Shirley, are able to share the joy of this accomplishment with me.

I thank my friends for the many fond memories and for making sure that I didn't

spend all of my time studying.

I thank God for everything.

IV

Abstract

This thesis introduces some formal techniques which can be used for synthesis of VLSI

(very large scale integration) architectures for DSP (digital signal processing) algorithms.

These techniques can be used to design architectures for single-rate/single-dimensional

DSP, multirate/single-dimensional DSP, and single-rate/multi-dimensional DSP.

For single-rate/single-dimensional DSP, we have developed a novel technique for ex-

haustively generating all retiming and scheduling solutions for the DSP algorithm. The

significance of this contribution is two-fold. First, it allows a circuit designer to explore

a large space of possible high-level implementations for the algorithm, which allows the

designer to make a good decision about the high-level architectural details of the de-

sign. Second, this work explicitly shows the important interaction between retiming and

scheduling in high-level synthesis. While retiming and scheduling have been treated as

separate problems in the past, our work uses a mathematical framework to show that

retiming is a special case of scheduling.

Also for single-rate/single-dimensional DSP, we have developed techniques for com-

puting the minimum number of registers required to implement a statically scheduled

DSP program. Closed-form expressions are derived for computing the minimum number

of registers assuming various memory models with or without retiming the scheduled

DFG. This is an important problem because memory typically occupies a large portion

of the area of a DSP implementation (often over half of the area), and minimizing this

area leads to more efficient designs.

For multirate/single-dimensional DSP, we have developed a multirate folding tech-

nique which can be used to synthesize single-rate architectures from multirate DSP

algorithms. Prior to the development of this formal technique, the design of single-rate

architectures for multi-rate DSP algorithms was performed using ad hoc design tech-

niques.

For single-rate/multi-dimensional DSP, we have developed two techniques for retim-

ing two-dimensional data-flow graphs. These techniques are designed to minimize the

memory requirements under a given clock period constraint. These techniques can result

in retimed circuits which use less than 50% of the memory required by previously used

techniques.

Contents

1 Introduction 1

1.1 Overview i

1.2 Contributions 3

1.3 Outline 6

2 Exhaustive Retiming and Scheduling 7

2.1 Introduction 7

2.2 Introduction to Graph Theory 10

2.2.1 Basic Definitions 10

2.2.2 Matrix Representations 11

2.2.3 Finding the Independent Loops of a Strongly Connected Graph . . 13

2.3 Scheduling and Retiming Formulations 18

2.3.1 Bit-Parallel Scheduling 19

2.3.2 Retiming 23

2.3.3 Bit-Serial Scheduling 25

2.4 Generating All Scheduling and Retiming Solutions 28

2.4.1 Generating All Bit-Parallel Scheduling Solutions 28

2.4.2 Generating All Retiming Solutions 36

VI

2.4.3 Bit-Serial Scheduling 39

2.5 Bit-Parallel Scheduling with Resource Constraints 42

2.5.1 The Solution-Save Method 43

2.5.2 The Solution-Generate Method 46

2.6 Conclusions 53

3 Register Minimization in Folded Architectures 55

3.1 Introduction 55

3.2 Preliminaries 59

3.2.1 The Pipelined Processor Model 60

3.2.2 Systematic Folding Techniques 62

3.3 Memory Minimization without Retiming 66

3.3.1 Minimum Number of Registers for Outputs from a Single Node . . 66

3.3.2 Minimum Number of Registers for an Arbitrary DFG 70

3.3.3 Comparison of Memory Models 77

3.4 Memory Minimization Using Retiming 78

3.5 Conclusions 34

4 Multirate Folding 87

4.1 Introduction 37

4.2 Some Multirate DSP Fundamentals 90

4.3 Derivation of Folding Equations 91

4.3.1 Single-Rate Folding 92

4.3.2 Multirate Folding 93

4.4 Retiming for Folding 96

vn

4.4.1 Single-Rate Case 97

4.4.2 Multirate Cases 97

4.5 Memory Requirements for Folded DSP Architectures 99

4.5.1 Type S Nodes 100

4.5.2 Type E Nodes 103

4.5.3 Type D Nodes 106

4.5.4 Memory requirements for a general DFG Ill

4.6 Design Example 114

4.6.1 Folding Equations for the Original DFG 116

4.6.2 Retiming for Folding 117

4.6.3 Folding Equations for the Retimed DFG 117

4.6.4 Memory Requirements of the Folded Architecture 118

4.6.5 Allocate Data to the Minimum Number of Registers 118

4.6.6 The Folded Architecture 118

4.7 Conclusions 119

5 Two-Dimensional Retiming 122

5.1 Introduction 122

5.2 Processing Two-Dimensional Data Sets 124

5.2.1 Overview of Two-Dimensional Retiming 125

5.2.2 Types of Parallelism Available in 2-D Signal Processing 125

5.2.3 Processing Order 128

5.3 An Integer Linear Programming Formulation of 2-D Retiming 129

5.3.1 Causality in 2-D Data Processing 129

5.3.2 The Clock Period Constraints 133

viii

5.3.3 The Memory Cost 135

5.3.4 The Complete ILP 2-D Retiming Formulation 136

5.4 Orthogonal 2-D Retiming 138

5.4.1 Fanout Model 139

5.4.2 s-Retiming 141

5.4.3 a-Retiming 144

5.4.4 Combining the results of s-retiming and a-retiming 151

5.5 Integer Orthogonal 2-D Retiming 153

5.5.1 a-retiming for the sx = 1 Case 153

5.5.2 a-retiming for the sy = 1 Case 158

5.6 Comparisons 159

5.7 Conclusions 162

6 Conclusions and Future Research Directions 165

6.1 Conclusions 165

6.2 Future Research Directions 166

References 168

IX

List of Figures

1.1 A simplified version of the design process from application to silicon. ... 2

2.1 A strongly connected graph. The branches of a spanning tree are shown

with solid lines, while the links of the corresponding cotree are shown with

dashed lines 13

2.2 A directed cycle created by adding link lk which goes from (G - G$) to
GR 16

2.3 The four steps of Algorithm FFL which finds the four fundamental loops

of the graph shown in Figure 2.1. For each iteration k, the subgraph G$

is circled 13

2.4 The timing diagram for the bit-serial operator A 26

2.5 (a) The architecture for a bit-serial adder for wordlength of W. (b) The

timing diagram for this architecture 26

2.6 An edge uA« with wT(e) delays 27

2.7 The data-flow graph used in Example 2.5 33

2.8 (a) The biquad filter. This graph is not strongly connected, (b) A modified

version of the biquad filter. This graph is strongly connected 39

2.9 The correlator example which has 143 retiming solutions 39

2.10 A third-order all-pole IIR filter 40

2.11 The circuits and timing diagrams for the three multipliers in Figure 2.10. 41

2.12 The timing diagram for the filter in Figure 2.10. The edge labels are

shown in parentheses to avoid confusion with the timing values 42

2.13 An architecture for the third-order all-pole filter. This architecture uses

the minimum number of registers (20), not including the registers which

are internal to the processing units 43

2.14 The six scheduling solutions for the biquad filter which use 1 adder and 1

multiplier. The number in parentheses next to a node is the time partition

to which the node is scheduled 46

2.15 The 4-stage pipelined 8-th order all-pole lattice filter. The edge labels

are in parentheses to avoid confusion with the node labels. One possible

spanning tree is shown in solid lines 47

2.16 (a) One form of loop(A): vj 4 vIN ^vR^vj. Link lk is in {G - G^)

and path p2 is in G$. (b) The other form of loop(fc): vj 4 vrN ~*

"COMMON ~> vj. Link lk is in (G - G$) and path p4 is in G%\ (c)

Equivalent loop(fc): vj 4 vIN ^> vY ~» vj. Link lk is in (G - G^) and

path PB is in GR. The forms in (a) and (b) can be generalized to the

form in (c) 48

2.17 The graph scheduled in Example 2.9 50

2.18 The fifth-order wave digital elliptic filter. The branches of the spanning

tree used in Algorithm FFL is shown with solid lines, and the links are

shown with dotted lines 52

3.1 (a) Algorithm DFG describing y(n) = au{n) + v(n). (b) Data path spec-

ification derived from the algorithm DFG for an iteration period of 10. . . 56

3.2 (a) A DFG with four arcs, (b) Equivalent representation of the DFG

shown in (a) 60

3.3 (a) Implementation of P-stage pipelined processor H with lumped pipelin-

ing delays, (b) Pipelined processor with separated internal pipelining de-

lays, (c) Pipelined processor where the last pipelining delay can be shared

with other data paths, (d) A simplified version of (c) 61

XI

3.4 (a) An arc U ->• V in the algorithm DFG. (b) The mapping of the folded

arc in the architecture DFG 63

3.5 (a) The biquad filter, (b) The retimed filter with valid folding sets assigned. 64

3.6 The folded biquad filter using the specifications given in Figure 3.5(b).

The shaded arc represents arc A\ -> M4 in the folded DFG 65

3.7 (a) A fanout node U. (b) The lifetime chart of samples in the folded

architecture 71

3.8 (a) A scheduled DFG which has 3 delays and whose hardware requires 5

registers, (b) A retimed version of the DFG which has 4 delays and whose

hardware requires 4 registers. For both parts, an iteration period of 2 is

assumed and all nodes are mapped to processors with one pipelining stage. 80

3.9 The complete synthesized hardware for the scheduled biquad filter in Fig-

ure 3.5(b). D and Ri represent word-size registers 82

3.10 (a) Fifth-order wave digital elliptic filter. The DFG has been retimed

using MPSL retiming to minimize the number of registers required given

the schedule generated by the MARS system (see Table 3.7). (b) Synthe-

sized hardware using the minimum possible iteration period of 16 and the

theoretical lower limit of 10 registers 86

4.1 Examples of full and pruned binary tree-structured filter banks, (a) Full-

tree analysis filter bank, (b) Full-tree synthesis filter bank, (c) Pruned-

tree analysis filter bank which can be used to compute the DWT. (d)

Pruned-tree synthesis filter bank which can be used to compute the inverse

DWT 89

4.2 (a) Decimation by M. (b) Expansion by M 91

4.3 Redistribution of delays in a multirate system using the noble identities. . 91

4.4 (a) A simple single-rate DSP algorithm with two addition operations, (b)

A folded architecture where the two addition operations are folded to a

single hardware adder with one stage of pipelining 92

4.5 (a) An arc U -> V with i delays, (b) The corresponding folded arc 93

Xll

4.6 (a) An arc U -> V which contains a decimator. (b) The corresponding

folded arc 94

4.7 (a) An arc U -> V which contains an expander, (b) The corresponding

folded arc 95

4.8 (a) A multirate DFG which computes zi{n) = a(x(2n) + y(2n)). (b)

Retimed version which computes z2(n) = a(x{2n - 1) + y(2n - 1)) 99

4.9 (a) A Type S node U. (b) The lifetime chart of samples in the folded

architecture 103

4.10 (a) A Type E node U. (b) The lifetime chart of samples in the folded

architecture 106

4.11 A Type D node U with several fanout arcs 110

4.12 The lifetime chart for Example 4.3. The folded implementation requires

5 registers since this is the maximum number of live samples at any time

step 112

4.13 Multirate DFG for Example 4.4 113

4.14 Folded architecture for Example 4.4. D denotes an internal pipelining

delay, while R{ denote external registers. This implementation uses five

registers, which is the minimum value computed in the example 115

4.15 A three-level orthogonal discrete wavelet transform analysis filter bank

which uses third-order wavelet filters 116

4.16 Folded architecture for the three-level orthogonal discrete wavelet trans-

form analysis filter bank which uses third-order wavelet filters. If an input

to a switch is not labeled, then this input is switched in at all time units

not assigned to other inputs of the switch 119

5.1 A 2DFG which describes the computation y(ni,n2) = b + ax(ni + l,n2- 1).125

5.2 (a) A 2DFG which describes the computation y(ni, n2) = ay(ni -1, n2) +

by(nx,n2 - 1) + x(n). (b) The dependencies for this 2DFG assuming it

operates on a 3 x 3 data set 126

xni

5.3 A retimed version of the 2DFG in Figure 5.2(a) 128

5.4 The effect of four dependencies on sample (2,3). Processing starts at

sample (0,0) 131

5.5 (a) Fanout implementation using 1 + 3 + 7 = 11 registers, (b) Fanout

implementation using max(1,3,7) = 7 registers 136

5.6 The (a) unretimed and (b) retimed 2DFGs referred to in Example 5.2. . . 138

5.7 (a) A fanout node u. (b) A gadget used to model node u in the linear

programming formulations of orthogonal 2-D retiming 141

5.8 (a) The unretimed graph using the fanout model, (b) The result of s-

retiming, where the numbers in parentheses represent w^ (e) 143

5.9 (a) The 2DFG which is subjected to a-retiming in Example 5.4. (b) The

results of s-retiming and a-retiming for the 2DFG in Figure 5.6(a). These

results are found in Examples 5.3 and 5.4 148

5.10 The result of performing orthogonal 2-D retiming on the 2DFG in Fig-

ure 5.6(a) 152

5.11 (a) The 2DFG which is retimed in Example 5.6. (b) The result of s-

retiming. (c) The 2DFG showing the dependencies on the auxiliary edges,

(d) The retimed 2DFG which achieves the desired clock period of 2 time

units 157

5.12 (a) A 2DFG. (b) The samples which must be stored 160

5.13 (a) A 2-D IIR filter, (b) A retimed version of the filter 164

xiv

List of Tables

2.1 The twelve valid scheduling solutions for the DFG in Figure 2.7 34

2.2 The twelve valid retiming solutions for the DFG in Figure 2.7 38

2.3 The f and s values for the six valid scheduling solutions for the biquad

filter which use 1 adder and 1 multiplier for an iteration period of 4. . . . 45

2.4 The r and p values for the six valid scheduling solutions for the biquad

filter which use 1 adder and 1 multiplier for an iteration period of 4. . . . 45

2.5 The intervals for Example 2.9 51

2.6 The results of exhaustively scheduling the filter in Figure 2.18 using the

techniques presented in Section 2.4.1 53

2.7 The results of exhaustively scheduling the filter in Figure 2.18 for a given

set of resource constraints using the techniques presented in Section 2.5.2.

The left part of the table considers scheduling to the minimum possible

number of adders and multipliers for the given iteration period, and the

right part considers scheduling to the minimum number of adders, multi-

pliers, and registers 53

3.1 Summary of the three memory models described in Section 3.3.2 71

3.2 The number of registers required to implement the nodes of the biquad

filter individually. 73

3.3 The number of live variables at the output of each operator of the folded

biquad filter for all possible time partitions 75

xv

3.4 The number of live variables due to each node in the biquad filter for all

possible time partitions 77

3.5 Register count using various memory models. The benchmark filters used

are fourth-order lattice filter (Fl), fifth-order wave digital elliptic filter

(F2), fourth-order Jaumann filter (F3), four-stage pipelined lattice filter

(F4), and biquad filter shown in Figure 3.5(a) (F5). N is the iteration

period 73

3.6 Register count for the benchmark filters described in Table 3.5. N is

the iteration period. Both scheduling techniques require the minimum

number of processors 83

3.7 The schedule from the MARS system for the fifth-order wave digital el-

liptic filter 84

4.1 Values of ijjjj for Example 4.3 110

4.2 Summary of the expressions for rnvey{n) for the various types of nodes.

Note that u is the folding order of node U, and P\j is the number of

pipelining stages in hardware unit Hy which executes node U 113

4.3 Schedule for the three-level orthonormal DWT example. The numbers

across the top of the table represent the eight time partitions. An X

denotes a null operation, so it is clear that the folded architecture will

have 87.5% hardware utilization 117

4.4 Folding and retiming equations for the single-rate edges in the DWT ex-

ample. The retiming-for-folding equation for edge U -)• V is r(U)-r(V) <

Ruv 120

4.5 Folding and retiming equations for the multirate edges in the DWT exam-

ple. The retiming-for-folding equation for edge U ->• V is r(U) - 2r(V) <

Ruv 121

5.1 Four possible execution orders for the DFG in Figure 5.2(a) assuming a

3x3 data set 126

xvi

5.2 Possible execution times for the unretimed 2DFG in Figure 5.2(a) and the

retimed 2DFG in Figure 5.3 assuming that addition and multiplication

require 1 and 2 units of time, respectively. The unretimed 2DFG does

not allow addition and multiplication to be executed in parallel, while the

retimed 2DFG does allow addition and multiplication to be executed in

parallel 128

5.3 The values of W(u,v) and D(u,v) for Example 5.2 138

5.4 The values of w{3)(u,v), W^(u,v), and D{u,v) for Example 5.4 148

5.5 The values of WJ:s){u,v), W^(u,v), and D(u,v) for Example 5.6 158

5.6 Memory requirements after retiming the circuit in Figure 5.6(a) assuming

a 256 x 256 data set 161

5.7 Memory requirements after retiming the circuit in Figure 5.13(a) assuming

a 256 x 256 data set 161

xvn

Chapter 1

Introduction

1.1 Overview

This thesis introduces some formal techniques which can be used for the synthesis of

VLSI [1, 2] (very large scale integration) architectures for DSP [3, 4, 5, 6] (digital signal

processing) algorithms. DSP is used in many applications such as compact disc players,

digital television, videoconferencing systems, digital telephony, radar, and sonar, just

to name a few. VLSI architectures for DSP algorithms must be designed to satisfy

constraints on the sampling rate, chip size, and power consumption. Without adequate

implementations, DSP algorithms would not be useful to consumers.

Figure 1.1 shows a simplified version of the process of generating a silicon solution

for a given application. There are three main steps in this process. The first step is

to develop or choose the proper DSP algorithm for the application. The second step

is high-level synthesis [7] -[26], which maps the algorithm to a VLSI architecture, and

the third step is low-level synthesis, which maps the VLSI architecture to silicon. These

three steps are not independent, and it has become apparent that a good understanding

of all three of these steps is required to design an efficient silicon solution for a given

application. The focus of this thesis, as indicated in the figure, is on the area of high-

level synthesis, i.e., designing high-level VLSI architectures for DSP algorithms. The

formal techniques introduced in this thesis help provide a better understanding of the

algorithm -» architecture step and provide new techniques for mapping algorithms to

architectures.

General Procedure Example

Application

This Thesis^

^Lh

Filter a digital

signal

Requires Signal Processing Expertise

DSP Algorithm

lh".^>,imA.i>tim^,mm-

^LL
Fourth-order

IIR Filter

^sr*l/-Algorithm.
WerelSynthesis'..: 'HM>^W^^^M^S?i A -..'SSfej»
rithm Transformations 'Vv^5^^«MrlHB3fSi ; *':<3&&*T-

VLSI

Architecture

±k.

Filter with two
multipliers and

one adder

Low-level Synthesis

Silicon

Njl
Single-phase clock

Wallace Tree mult.

Carry-select adder

Figure 1.1: A simplified version of the design process from application to silicon.

As DSP algorithms become more complex and transistor sizes become smaller, the

tasks of designing and testing VLSI architectures for DSP have become very challenging

due to the sheer size of these tasks. In order for products to be introduced in a timely

manner, CAD (computer-aided design) tools [8, 26, 24, 16, 10, 12, 20, 22, 23, 14, 15] are

often required. These tools not only decrease design time, but they also make the design

process more tractable, improving the reliability of the final VLSI design. These CAD

tools are based on formal design techniques which can be used to automate the process

of synthesizing VLSI architectures for DSP algorithms.

Some formal techniques for synthesizing VLSI architectures for DSP algorithms are

introduced in this thesis. These techniques can be used to explore new VLSI designs for

DSP algorithms and improve CAD tools which are used to design VLSI architectures for

DSP algorithms. A description of these techniques is given in the following section.

1.2 Contributions

The contributions of this thesis fall into the categories of retiming [27], folding [28], and

register minimization [29]. A concise description of these contributions follows.

• Retiming

- Exhaustive retiming: A novel technique for exhaustively generating all re-

timing solutions for a DFG is developed. This technique, which is based on

the ideas in [30], [31], allows a circuit designer to examine many retiming

solutions rather than a single solution which is generated using a heuristic or

an optimization scheme. This is useful because it is easy to select the best

retimed solution optimized for circuit parameters, such as routing area, from

all retiming solutions.

- Two-dimensional retiming: Two novel techniques are developed for retiming

two-dimensional data-flow graphs (DFGs) to minimize the memory require-

ments under a given clock period constraint. These two techniques are inte-

ger linear programming (ILP) 2-D retiming and orthogonal 2-D retiming [32].

These techniques offer greater flexibility than the technique proposed in [33],

and they can reduce the memory requirement of retimed circuits by over 50%

compared to the technique in [34].

- Multirate retiming: Multirate retiming constraints are formalized as part of

the multirate folding formulation. Multirate retiming has received little at-

tention in the past, and most of the previous work has been focused on main-

taining properties such as liveness and reachability in synchronous data-flow

graphs (e.g., see [35]). The treatment of multirate retiming in this thesis con-

siders the problem at a more fundamental level by using some simple identities

of multirate DSP [5]. We show that our multirate retiming formulation is use-

ful for high-level synthesis of single-rate VLSI architectures for multirate DSP

algorithms [36].

Folding

- Exhaustive Scheduling: A novel technique for exhaustively generating all time

schedules for folding a DFG is developed [31]. This technique, termed "ex-

haustive scheduling", has three important features. First, it shows the im-

portant interaction between retiming and scheduling in a solid mathematical

framework. Retiming and scheduling have only recently been considered to-

gether [11, 26, 12, 37, 38], and none of these works has given a mathematical

framework for demonstrating how retiming and scheduling interact in high-

level synthesis. Second, our mathematical framework can be used to show

that retiming is simply a special case of scheduling. Many researchers have

thought this to be true for a long time, but none have shown this mathe-

matically. Finally, exhaustive scheduling allows a circuit designer the option

of evaluating several different schedules for characteristics that are difficult

to include in heuristics [12, 15, 26] or ILP models [39, 40, 22, 37] used for

scheduling.

- Multirate folding: A novel technique for folding multirate DSP algorithms is

developed [36]. This technique maps multirate DSP algorithms to single-rate

VLSI architectures. For example, multirate folding can be used to design

single-rate architectures for algorithms which use multirate filter banks, such

as the discrete wavelet transform (DWT) [41, 42, 43, 44, 45]. Prior to the

development of multirate folding, single-rate VLSI architectures for multirate

DSP algorithms were designed using ad hoc design techniques. Multirate

folding provides a vehicle for systematically designing improved architectures

for multirate DSP algorithms.

Register Minimization

- Single-rate register minimization: Expressions are derived for computing the

minimum number of registers required to implement a statically scheduled

single-rate DSP algorithm [46]. To the best of our knowledge, no such expres-

sions existed prior to this work. Expressions are derived for three different

memory models. These expressions can be used in CAD tools to evaluate

the quality of schedules with respect to memory requirements. For example,

these expressions are used along with our exhaustive scheduling technique to

determine the schedules which require the minimum number of registers.

- Multirate register minimization: Expressions are derived for computing the

minimum number of registers required to implement a statically scheduled

multirate DSP algorithm. This novel approach to evaluating memory re-

quirements allows for the design of memory-efficient single-rate architectures

for the implementation of multirate DSP algorithms.

1.3 Outline

This thesis is organized as follows. The exhaustive retiming and scheduling algorithms

are developed in Chapter 2. This chapter also provides a background information on

retiming and folding. Register minimization for statically scheduled single-rate data-flow

graphs is considered in Chapter 3. Chapter 4 contains the derivation of the multirate

folding transformation, including the work on retiming for multirate folding and register

minimization for folded multirate DSP algorithms. The two-dimensional retiming tech-

niques are derived in Chapter 5, and conclusions and suggestions for future research are

presented in Chapter 6.

Chapter 2

Exhaustive Retiming and
Scheduling

2.1 Introduction

Time scheduling and retiming [27] are important tools used to map behavioral descrip-

tions of algorithms to physical realizations. These tools are used during the design of

software for programmable digital signal processors (DSPs), during high-level synthesis

of applications-specific integrated circuits (ASICs), and during the design of reconfig-

urable hardware such as field-programmable gate arrays (FPGAs). Time scheduling and

retiming operate directly on a behavioral description of the algorithm, such as a data-

flow graph (DFG). Since the decisions made at the algorithmic level tend to have greater

impact on the design than those made at lower levels, the importance of time scheduling

and retiming cannot be overstated.

This chapter presents new formulations of the time scheduling and retiming problems,

and based on these formulations, new techniques are developed to determine the solu-

tions to these problems [31]. (From this point forward, we shall refer to time scheduling

as simply scheduling.) These formulations are valid for strongly connected (SC) graphs,

where a strongly connected graph has a path u ~> v and a path v ~» u for every pair of

nodes u, v in the graph. We focus on strongly connected graphs because these graphs

traditionally present the greatest challenges when they are mapped to physical realiza-

tions due to the feedback present in the graphs. An example of a strongly connected

DFG is the fifth-order wave digital elliptic filter [47] in Figure 2.18 which is commonly

used as a benchmark for demonstrating high-level synthesis techniques.

Scheduling consists of assigning execution times to the operations in a DFG such

that the precedence constraints of the DFG are not violated. A great deal of litera-

ture exists on the topic of scheduling in the context of high-level synthesis for ASIC

design for DSP applications [7] -[26]; however, none of these works gives a formal def-

inition of scheduling along with systematic techniques for exhaustively generating the

solutions to the scheduling problem. This chapter presents new scheduling formulations

and algorithms for exhaustively generating the solutions to the scheduling problem. Two

scheduling problems are considered, namely, scheduling for time-multiplexed execution

on bit parallel architectures and scheduling for execution on bit-serial architectures.

Retiming consists of moving delays around in a DFG without changing its function-

ality. As with scheduling, there is a huge body of literature on retiming, and new

applications for retiming are constantly being found. For example, due to the recent

demand for low-power digital circuits in portable devices, some recent work has focused

on retiming for power minimization [48]. The groundbreaking paper on retiming [27]

describes algorithms for tasks such as retiming to minimize the clock period and retim-

ing to minimize the number of registers (states) in the retimed circuit. An approach to

retiming which is based on circuit theory can be used to generate all retiming solutions

for a DFG [30]. This approach was the motivation for our work on exhaustive scheduling.

In this chapter, we show that retiming is a special case of scheduling, and consequently,

the formulation of the scheduling problem and the techniques for exhaustively generating

the scheduling solutions can also be applied to retiming.

The impact of the formulations derived in this chapter are as follows.

• The interaction between retiming and scheduling is important [11], and our formu-

lations give a simple way to observe this interaction.

• We show that retiming is a special case of scheduling.

• We give solid mathematical descriptions of the scheduling and retiming problems

in a common framework.

• We develop techniques for generating all solutions to a particular scheduling or

retiming problem. This allows a developer the ability to search the design space

for the best solution, particularly when various parameters are difficult to model

and include in a cost function. This has applications to software design, ASIC

design, and design for reconfigurable hardware implementations.

« Our formulations provide for a better understanding of scheduling and retiming

which can be used to develop new heuristics for these problems.

Many of the results in this chapter rely upon graph theory. Section 2.2 gives a review

of some results from graph theory along with the derivation of an algorithm for finding

the independent loops in a strongly connected directed graph. Our formulations for

scheduling to bit-parallel and bit-serial architectures are given in Section 2.3 along with

an explanation of how retiming can be viewed as a special case of scheduling. Section 2.4

contains the description of a systematic technique used to exhaustively generate the

scheduling and retiming solutions. Section 2.5 describes two techniques for exhaustively

generating the schedules which satisfy a given set of resource constraints for a bit-parallel

architecture. Section 2.5 includes the results of scheduling the fifth-order wave-digital

elliptic filter in Figure 2.18 with and without resource constraints. Our conclusions are

given in Section 2.6.

2.2 Introduction to Graph Theory

This section provides a brief introduction to graph theory followed by an algorithm

for finding the independent loops in a strongly connected directed graph. Most of the

definitions and results in Sections 2.2.1 and 2.2.2 can be found in [49].

2.2.1 Basic Definitions

We are concerned only with directed graphs. A directed graph G is represented as

G =< V,E,d,w >, where

• V is the set of vertices (nodes) of G. The vertices represent computations.

• E is the set of directed edges of G. A directed edge e e E from node u G V to

node v G V is denoted as u A v. The edges represent communication between the

nodes.

• w{e) is the number of delays on the edge e, also referred to as the weight of the

edge.

• d(v) is the computation time of the node v.

A directed path «o^«^-"^' un_i ^ vn is denoted as v0 ~» vn. A simple path

is a path with distinct edges, and an elementary path has distinct nodes. A cycle is a

closed path (i.e., v0 = vn). A simple cycle has distinct edges and an elementary cycle has

10

distinct nodes. An elementary cycle in a directed graph will be referred to as a "loop"

in this chapter.

A directed graph is strongly connected if for every pair of vertices u, v € V, there

exists a path u ^ v and v ~> u. A directed spanning tree is a subgraph of G which

has a root node vR and a path vR ~> v for all v G V except vR. The directed spanning

tree contains no cycles. If |V| is the number of nodes in G, then a directed spanning

tree contains exactly |V| nodes and |7| - 1 edges. An edge of a directed spanning tree

is called a branch, and the edges of G not included in the tree are called links. Every

strongly connected graph contains a directed spanning tree.

An edge e from u to v (u A v) is incident with vertices u and v. More specifically, e

is incident from u and incident into v.

The set operations such as union, intersection, difference, complement, etc., are op-

erations on the edges of a graph. Let Ga and Gb be two subgraphs of a connected graph

G. Ga U Gb consists of all edges in Ga or Gb (or both) and the vertices incident with

these edges. G - Ga is formed by removing all edges in Ga from G, and then removing

all vertices with no incident edges.

2.2.2 Matrix Representations

A strongly connected graph contains exactly \E\ - \V\ + 1 linearly independent loops

(this is shown in Section 2.2.3). Let B be the fundamental loop matrix. This matrix,

which has dimensions {\E\ - \V\ + 1) x \E\, is defined as

, _ f 1 if edge j is in loop i
tJ 1 0 otherwise

Each row of B represents one of \E\ - | V| + 1 linearly independent loops in B.

Let A be the oriented incidence matrix of G. This matrix, which has dimensions

11

\V\ x \E\, is defined as

aij = <
1 ej is incident from V{
— 1 ej is incident into u,
0 ej and Uj are not incident

and rank(A) = |V| - 1. The reduced oriented incidence matrix AR is defined to be any

\V\ - 1 rows of A. AR has dimensions (|V| - 1) x \E\ and rank(Aß) = |V| - 1.

Two important relationships between the fundamental loop matrix and the oriented

incidence matrix are BAr = 0 and BA^ = 0.

Example 2.1 Consider the directed graph in Figure 2.1. This graph has six nodes and

nine edges (]V\ = 6 and \E\ = 9). The branches of a directed spanning tree are shown

with solid lines and the links are shown with dashed lines. The spanning tree contains

\V\ - 1 edges and \V\ nodes. One possibility for the ({\E\ - \V\ + 1) x \E\) = (4 x 9) B

matrix is

B

110 0 0 10 0 0
0 110 0 0 10 0
0 0 10 10 0 10
0 0 0 10 0 10 1

(2.1)

whose columns and rows appear according to the numbering of the edges and loops, re-

spectively, in Figure 2.1. A is the (|V| x \E\) = (6x9) matrix

1 0 0 0 0 -1 0 0 0
0 -1 1 0 0 1 0 -1 0

-1 1 0 1 0 0 -1 0 0
0 0 0 0 -1 0 0 1 0
0 0 -1 0 1 0 1 0 -1
0 0 0 -1 0 0 0 0 1

The reader can verify that rank(A) = | V| -1 = 5 and BAT = 04x6- One possible reduced

incidence matrix is the ((|V| - 1) x \E\) = (5x9) matrix

Aß =

0 -1 1 0 0 1 0 -1 0
-1 1 0 1 0 0 -1 0 0
0 0 0 0 -1 0 0 1 0
0 0 -1 0 1 0 1 0 -1
0 0 0 -1 0 0 0 0 1

(2.2)

12

which is simply A with the the first row (the row corresponding to node I) removed. The

reader can verify that rank(AR) = |V| - 1 = 5 and BA^ = 04x5.

Figure 2.1: A strongly connected graph. The branches of a spanning tree are shown with
solid lines, while the links of the corresponding cotree are shown with dashed lines.

2.2.3 Finding the Independent Loops of a Strongly Connected Graph

Recall that the fundamental loop matrix B has \E\ - |V| + 1 rows, each of which corre-

sponds to an independent loop. This section gives an algorithm for finding \E\ - \V\ + 1

independent loops of a strongly connected graph. Let GT be a directed spanning tree of

G, where VR is the root node of GT, i.e., there is a path VR^V for all v 6 V except VR.

Algorithm FFL (Find Fundamental Loops) is given below.

Algorithm FFL (Find Fundamental Loops)

G^^VR;

FOR (k = l TO \E\ - \V\ + 1)

{

STEP 1: lk = a link in (G - G£
}
) which is incident to G^;

STEP 2: loop(fc) = A loop in GT U G^ U lk which contains lk;

STEP 3: G%+1) = G(
R

fc)U loop(fc);

}

The |£|_|y| + l loops denoted as loop(fc), 1 < A; < (|£;|-|V| + 1), are the fundamental

13

loops of G.

Algorithm FFL maintains a subgraph GR which initially consists of the root node

of the directed spanning tree GT- During iteration A:, a link lk in (G - G{
R
]) which is

incident into a node in G{
R
] is chosen in STEP 1. This link, along with edges in GTUG{

R\

form a loop which we denote as loop(fc). G{
R
} is then updated at the end of the iteration.

To prove that Algorithm FFL works, we need to show that link lk in STEP 1 exists

for each iteration 1 < k < {\E\ - |V| + 1), and we need to show that loop(fc) in STEP 2

exists for 1 < k < {\E\ - |V| + 1).

The following three lemmas are used to prove that link lk exists in STEP 1 of Algo-

rithm FFL.

Lemma 2.1 G$ is strongly connected (SC).

Proof: By induction. GR
l) = vR is SC. Assume that G{

R
] is SC. Each vertex in (G{

R
+l) -

GR) is part of loop(fc) which has at least one vertex in G{
R\ so G%+1) is also SC. D

Lemma 2.2 For every node v in G^ except vR, there is a branch of GT in G^ which

is incident into the node v.

Proof: By induction. This holds for GR
l). Assume this holds for G^K All edges of

loop(k) are in GT U G(
fi

fc) U /. Since G£
+1)

 = G^U loop(A;), all edges in (G(
ß

fe+1) - G(
fi

fc))

except lk are tree branches. Since lk is incident into a node in G(
R\ each node in G^+1)

but not in GR must have a tree branch in G(^+1) incident into it. So every node in

GR , except vR, has a tree branch in G(^+1) incident into it. D

The following lemma uses the result of Lemma 2.2.

14

Lemma 2.3 There are no branches of GT in {G - G$) which are incident to a node

(k)
inGR

Proof: By contradiction. Assume a branch exists in (G - G$) which is incident into

the node v in GR . Then v must have two incident branches because we know from

Lemma 2.2 that there is also a branch in G$ which is incident into v. However, no

node can have two incident branches because multiple paths vR -v* v would exist in GT,

which is not allowed. D

Lemma 2.1 and Lemma 2.3 are used to prove that lk exists in STEP 1 of Algorithm

FFL.

Theorem 2.4 Link lk in STEP 1 of Algorithm FFL exists for all iterations 1 < k <

(\E\-\V\ + 1).

Proof: (G - GR') contains exactly \E\ - |V| + 2 - k links at the start of iteration k, so
/L.\

(G - GR) contains at least one link during each iteration. Consider the following two

cases:

1. There exists a node v eV which is not in G{
R\ i.e., no edges in G$ are incident

into or from v. Since G is SC, there is a path from v to vR, implying that there is a

path from v to G{
R\ According to Lemma 2.3, there are no branches in (G - G^)

which are incident to a node in G{
R\ so there must be a link in (G - G$) which

is incident into Gfr allowing a path to exist from v to G$.

2. GR contains all nodes. Each link in (G - G^) is incident into G{
R
] in this case.

15

The following theorem uses Lemma 2.1 to show that loop(A;) in STEP 2 exists for

l<k<(\E\-\V\ + l).

Theorem 2.5 There is a loop containing lk in GT U G^ U lk.

Proof: Consider Figure 2.2. Nodes vR and v[N are in G%\ Link lk is in (G - G$).

Path p2 exists in G{^ because G%] is SC (according to Lemma 2.1). Path pi exists

in GT because VR is the root of the directed spanning tree. So a directed cycle vx 4-

vrN ^+vR-^> vx exists in GT U G$ U lk. If this directed cycle is not elementary, then it

must have the form vx 4- VJN ~> ^COMMON ~» «fl ~» ""COMMON ~* "x, from which the

elementary directed cycle (loop) uA- 4 w//v ~» vCOMMON ~» vx can be found. D

Figure 2.2: A directed cycle created by adding link lk which goes from (G - GW) to
Crfi .

We construct the fundamental loop matrix B by letting loop(fc) from Algorithm FFL

be the k-th row of B. The edges in the graph are numbered such that the first (| V| - 1)

columns of B correspond to the branches of the spanning tree of G, and the remaining

(|£7|-|V| + 1) columns correspond to the links. The link lk is assigned to the (|V|-1 + A;)-

th column of B. By constructing the fundamental loop matrix in this manner, it has the

form

B = [C | L] , (2.3)

16

where C is an (|JE?| -1V| +1) x (|V| -1) matrix and L is an {\E\ -1V| +1) x (\E\ - \V\ +1)

lower triangular matrix with ones on the diagonal. Note that the columns of L correspond

to the links of G while the columns of C correspond to the branches of G. Because of

its form, B has rank (\E\ - \V\ + 1).

It can also be shown that adding more loops of G to B (adding a loop would consist

of adding a row to B) does not increase its rank. Therefore, the (\E\ - | V| + 1) rows of

B form a basis for the loops of G.

Example 2.2 This example uses Algorithm FFL to form the fundamental loop matrix

for the graph in Figure 2.1. The spanning tree with node 1 as the root node is shown in

Figure 2.3(a). At the start of Algorithm FFL G^ is node 1. During iteration k = 1, the

only possibility for link l\ is edge 6. The only possibility for loop(l) is 1 -4 3 A 2 A 1.

GR is circled in Figure 2.3(b). During iteration k = 2, there are two possibilities for link

I2, namely, edges 7 and 8. Choosing edge 7 as I2 results in loop(2) = 3->2-4-5-4 3.

G,\ is circled in Figure 2.3(c). During iteration k = 3, the two possibilities for link li

are edges 8 and 9. Choosing edge 8 as /:i results in loop(3) =2-4544-^2. G$

is circled in Figure 2.3(d). During iteration k — 4, link U is edge 9, and loop(4) is

4 9 7
3 —> 6 —> 5 —» 3. The fundamental loop matrix is

B =

Note that B has the desired form as given in (2.3). Row k corresponds to loop(k) from

Algorithm FFL and column i corresponds to edge i of G.

1 1 0 0 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 0

1 0 0 0 "
0 1 0 0
0 0 1 0
0 1 0 1

17

(a)

6> &-r<D ©
(b)

(c) (d)

Figure 2.3: The four steps of Algorithm FFL which finds the four fundamental loops of
the graph shown in Figure 2.1. For each iteration A;, the subgraph G$ is circled.

2.3 Scheduling and Retiming Formulations

Time scheduling (or simply scheduling) consists of assigning execution times to the oper-

ations in a DFG such that the precedence constraints of the DFG are not violated. This

section considers two scheduling problems, namely, scheduling to a time-multiplexed

bit-parallel target architecture (we call this bit-parallel scheduling) and scheduling to a

bit-serial target architecture (we call this bit-serial scheduling). It turns out that the

bit-parallel and bit-serial scheduling formulations are quite similar, and the retiming

formulation is a special case of bit-parallel scheduling.

18

2.3.1 Bit-Parallel Scheduling

In bit-parallel scheduling, a DFG is statically scheduled to a bit-parallel target archi-

tecture. The scheduling formulation presented in this section is based on the folding

equation developed in [28]. Folding is the process of executing several algorithm oper-

ations on a single hardware module. Scheduling is the process of determining at which

time units a given algorithm operation is to be executed in hardware.

Before the scheduling formulation is developed, we need a brief description of retiming.

The basic retiming equation for the edge uAuis [27]

wr(e) = w(e) +r{v) -r{u), (2.4)

where w{e) is the number of delays on the edge before retiming, wr(e) is the number of

delays on the edge after retiming, and r(u) and r(v) are the retiming values of nodes u

and v, respectively.

The notions of an iteration and an iteration period are used in this section. An

iteration is defined as the execution of each node in the DFG exactly once. The iteration

period is defined as the number of clock cycles used to execute one iteration of the DFG

in hardware.

Consider an edge e from node u to node v, denoted asuA«. The operations (nodes)

in the DFG are scheduled to be executed in the folded architecture once every N clock

cycles, where N is the iteration period. Let the l-th iteration of nodes u and v be

executed in hardware at time units Nl + p{u) and Nl +p{v), respectively, where p(u)

and p{v) are the time partitions to which the nodes are scheduled to execute such that

0 < p(u),p(v) < N - 1. Let edge e have wr(e) delays, which means that the result of the

l-th iteration of node u is used by the (I + iur(e))-th iteration of node v. The hardware

modules which execute nodes u and v are denoted as Hu and Hv, respectively. If Hu is

19

pipelined by d(u) stages, then the result of the /-th iteration of node u is available at

Nl + p(u) + d(u). This sample is used by the (I + wr{e))-th iteration of node v, which is

executed by Hv at N(l + wr(e)) +p(v), so the sample must be stored for

/(e) = N{1 + wr{e)) + p(v) - {Nl + p{u) + d{u)) = Nwr{e) - d{u) + p(v) - p{u)

clock cycles. Substituting for wr(e) using (2.4) gives

/(e) = Nw{e) - d{u) - N{r(u) - r(v)) - (p(u) - p(u)). (2.5)

The edge u A v with w{e) delays in the DFG maps to an edge from Hu to Hv with /(e)

delays in the architecture, and the data on this edge are switched into Hv at time units

Nl+p{v).

Note that we assume that the hardware module Hu is pipelined by d(u) delays, where

d(u) is the computation time of the node u in the DFG. If we define an \E\ x 1 vector

du whose i-th element is the computation time of the source node of edge i (the source

node of an edge is the node that the edge is incident from), then the folding equation

can be written for all \E\ edges of the DFG simultaneously using

f = Nvr-du-AT(p + Nr), (2.6)

where A is the |V| x \E\ incidence matrix for the graph G (see Section 2.2.2), p is the

|V| x 1 time partition vector which assigns node i to the time partition pi (0 < pi < N — l),

r is the |V| x 1 retiming vector with the retiming values of the nodes in G, w is \E\ x 1

and contains the number of delays on each edge of G, f is the \E\ x 1 folding vector

which contains the number of delays on each edge of the folded architecture, and du is

the \E\ x 1 delay vector as previously described. This formulation of folding is general

because it relies upon the retiming solution r and the time partition vector p. One way

to view this is that the DFG is preprocessed using retiming (hence the r vector) and

20

then scheduling is perfomed on the retimed DFG (hence the p vector). Combining r and

p using s = p + Nr results in the schedule vector s. Using s, the scheduling problem can

be written as

ATs = Nw - du - f. (2.7)

The rank of the | V| x \E\ incidence matrix A is | V| — 1. Therefore, the left nullspace of

A must consist of a vector x which satisfies ATx = 0|£|xl. We can see that x = l|v|xi

because each column of A contains exactly one entry which is a 1, one entry which is a

— 1, and the remaining entries of the column are zero.

Using A 1 jv|x! = 0|E|X1 we can write

AT(s + Jfel) = JVw - d„ - f,

which means that adding the constant k to each element of the schedule vector does not

change the number of delays on the edges of the folded architecture.

The incidence matrix A can be written as

T
A = [ai a2 • • • a|v|

The reduced incidence matrix consists of any | V| — 1 rows of A. Removing row m of A

results in

A, (2.8) ai a2 ••• am_i am+i ••• ajv|

The reduced incidence matrix AR has dimensions (|V| — 1) x \E\ and rank |V| - 1. The

reduced scheduling vector is defined as

Sfi = Sl S2 ■■■ Sm-l Sm+i ••• S|v| (2.9)

which can be written as SR = p« + iVrft, where p^ and r/j are the time partition vector

p and the retiming vector r with the m-th elements removed. Using AR and SR, we can

21

write

ATs = s(m)am + A£sR.

Substituting this into (2.7) results in

A£SR = Nw - du - f - s(m)am. (2.10)

Node m is called the reference node. Since replacing s by s' = s + fcl does not alter

the resulting folded architecture, we can choose k — -s(m) so s'(m) = 0. After replacing

s with s' = s - s(m)l, (2.10) becomes A^s'fi = Nxv - d„ - f.

Throughout the remainder of this chapter, we will assume that s' = s - s(m)l so

s'(m) = 0. In an abuse of notation, we will refer to s' simply as s so that (2.7) can be

written as

A£sfi = Nw - du - f. (2.11)

Lemma 2.6 The equation (2.11) can be solved for s/j if and only ifB(Nw - du) = Bf.

Proof: The equation (2.11) has a solution if and only if Nw - d„ - f is in the |V| - 1

dimensional row space of A«. Equivalently, (2.11) has a solution if and only if iVw-du-f

is perpendicular to the |J57| -1 V| +1 dimensional nullspace of AR because the nullspace is

the orthogonal complement of the row space in SR|E|. Since BA^ = 0 (see Section 2.2.2),

the \E\ - \V\ + 1 rows of the fundamental loop matrix B form a basis for the nullspace

of AR. Therefore, (2.11) has a solution if and only if B(iVw - du - f) = 0. □

To understand the meaning of B(iVw - du - f) = 0, we begin by writing B as

B = [bi b2 ••• b|E|_|K|+1

such that bf is the i-th row of B. Using this, B(Nw - du - f) = 0 implies bf f =

bf (JVw - du). Recall that 6^ = 1 if edge j is in loop i and bij = 0 otherwise. Therefore,

22

bj f is the total number of folded delays on loop i, and bf(Nvt - du) is a constant that

depends on G. The equation bf f = bf (iVw - du) states that the number of folded

delays on loop i is the same for any legal folding vector f, and B(iVw - du - f) = 0

implies that this is true for all \E\ - \V\ + 1 independent loops of G represented by

the rows of B. Furthermore, the sum of the number of folded delays for all edges and

pipelining delays associated with all nodes of a loop is the product of the folding factor,

N, and the number of loop delay elements, as noted in [28]. It can also be shown that

this holds for the dependent loops of G, i.e., the number of folded delays on each loop

of G that is not represented by a row of B is the same for any legal folding vector f.

If B(JVw - du) = Bf holds, (2.11) has exactly one solution for sß, which is given by

Sfi = (A/eA];)-1Afi(iVw-du-f). (2.12)

The above discussion can be summarized by saying that the number of folded delays on

each loop in G is the same for any valid schedule s.

In addition to the condition B(Nw - du) = Bf there is also the practical condition

that the number of delays on an edge in the folded architecture must be nonnegative.

This condition can be written as f > 0. The constraints for a valid schedule are

1. B(ATw-d„) =Bf

2. f > 0.

2.3.2 Retiming

Retiming is the process of moving delays around in a circuit without changing the func-

tionality of the circuit [27]. A brief description of retiming is given at the beginning of

Section 2.3.1. This section describes how retiming can be viewed as a special case of

bit-parallel scheduling.

23

The folding equation for a graph G is given in (2.6). If each node in G represents a

hardware operator, then all operations in the graph are executed in a single clock cycle

resulting in an iteration period of TV = 1. The elements of the time partition vector p

are all zero because time partition zero is the only available partition. If we let du = 0,

i.e., we do not consider any internal pipelining of the operators, (2.6) becomes

f =(l)w-0-AT(0 + lr)

which simplifies to

f = w - ATr. (2.13)

Since f is the number of delays in the folded architecture, f is equivalent to wr for N = 1,

so (2.13) becomes

wr = w - Arr, (2.14)

which is simply the matrix notation for writing (2.4) simultaneously for all edges of the

graph. This demonstrates that retiming is simply scheduling when the iteration period

is unity.

Using Arln/|xl = 0|E|xl, (2.14) can be written as

Ar(r + kl) - w - wr.

If r is a retiming vector which maps the graph G to the retimed graph Gr, then so is

(r + A;l) for any integer k.

In the context of retiming (i.e., assuming N = 1, p = 0, du = 0, and f = wr), (2.11)

can be written as

A^rR = w-wr. (2.15)

Recall that (2.11) assumes that s(m) = 0. Since s = iVr + p and p = 0 is assumed to

obtain (2.15), this implies that r(m) = 0 in (2.15). In other words, the retiming value

of the reference node is 0 in this formulation.

24

The translation of Lemma 2.6 to the retiming context is that (2.15) has a solution if

and only if Bw = Bwy holds. This implies that the number of delays on any loop in G

remains unchanged during retiming, as noted in [27]. If Bw = Bwy holds, (2.15) has

exactly one solution for r^, which is given by

rfi = (AflA^)-'Afi(w-wr). (2.16)

In addition to the condition Bw = Bwr, there is also the practical condition that the

number of delays on an edge in the retimed graph must be nonnegative. This condition

can be written as wr > 0. The condition for a valid retiming from G to Gr are

1. Bw = Bwr

2. wr > 0.

2.3.3 Bit-Serial Scheduling

In this section, a scheduling formulation is developed where the target architecture is a

bit-serial architecture. This formulation, which is similar to the formulation in Chap-

ter 6 of [50], has the same general form as the retiming and the bit-parallel scheduling

formulations in Sections 2.3.1 and 2.3.2.

A bit-serial operator is often represented using a timing diagram such as the one in

Figure 2.4. Let the execution of operator A in this figure begin at time TA- The first

bit of each of the inputs x\, x2, and X3 arrives at time units TA + t(xi), TA + t(x2), and

TA + £(2:3), respectively. The first bit of each of the outputs yi and y2 is produced at

time units TA + t{y\) and TA + t(y2), respectively. In other words, the timing diagram

gives the relative differences between the timing of the input and output samples of the

operator.

25

Figure 2.4: The timing diagram for the bit-serial operator A.

Example 2.3 For the bit-serial adder in Figure 2.5(a) which computes F = A + B, the

timing diagram is shown in Figure 2.5(b). Note that W is the wordlength.

■ F A
B + D

W/+0 ?

0

D
J&-

(a) (b)

Figure 2.5: (a) The architecture for a bit-serial adder for wordlength of W. (b) The
timing diagram for this architecture.

The constraints for the bit-serial scheduling problem can be derived using the timing

diagram. Consider the edge u A v with wT(e) delays in Figure 2.6. The output of

iteration / of u is used as the input of iteration I + wT{e) of v. Let the /-th iteration

of nodes u and v begin execution at time units Wl + p(u) and Wl +p(v), respectively,

where W is the data wordlength and p(u) and p(v) are the time partitions to which the

nodes are scheduled to execute such that 0 < p(u),p(v) <W -I. The output of the /-th

iteration of u is available at Wl +p{u) + t{u) and the output of the I + tur(e)-th iteration

of v is consumed at W(l + wr{e)) +p(v) + t{v), so the result must be stored for

6(e) = W(l+wr(e))+p(v) + t{v)-[Wl+p{u)+t{u)] = Wwr{e)-{t{u)-t(v))+p(v)-p(u)

clock cycles.

26

u t(u>
7Wr(e) ^v

Figure 2.6: An edge u A- v with wr(e) delays.

This equation can be written for all \E\ edges of the graph simultaneously according

to

b = Wwr - (tB - t„) - ATp, (2.17)

where

• A is the incidence matrix for the graph.

• p is the time partition vector which assigns node i to the time partition pi where

0<Pi < W -\.

• tu is defined such that tUi is the value t(-) at the source of edge i in the graph.

• t„ is defined such that tVi is the value t(-) at the sink of edge i in the graph.

• wr contains the number of delays on each edge of the retimed DFG.

• b contains the number of serial delays on each edge of the hardware implementa-

tion.

The bit-serial folding equation (2.17) operates on the retimed DFG Gr. Substituting

(2.14) into (2.17) results in

b = Ww - (t„ - t„) - AT(p + Wr).

Combining r and p using s = p + Wr results in

Ars = Ww - (t„ - t„) - b.

27

This equation can be rewritten as

A]JsR = Ww - (tu - t„) - b, (2.18)

where AR and sR are defined as in (2.8) and (2.9), and the scheduling value for the

reference node is s(m) = 0.

Using the same argument as in Lemma 2.6, it can be shown that the bit-serial schedul-

ing equation (2.18) has a solution if and only if B(Ww - (tu - t„)) = Bb. The equation

B(Ww - (t„ - t,,)) = Bb states that the sum of the serial delays in any loop of the

hardware implementation is the same for any valid serial delay vector b. In addition,

the sum of the number of serial delay elements of all edges and latencies associated with

all nodes in a loop is the same as the product of the word-length and the number of loop

delay elements.

A second constraint, b > 0, exists because a connection in hardware cannot have a

negative number of delays. The constraints for a valid bit-serial schedule are

1. B(^w-(tu-t„)) = Bb

2. b>0

The value of the schedule vector s can be found using

sR = {ARAT
R)-

1AR(WY, - (tu - t„) - b). (2.19)

2.4 Generating All Scheduling and Retiming Solutions

2.4.1 Generating All Bit-Parallel Scheduling Solutions

Based on the two constraints B(ATw - du) = Bf and f > 0, all scheduling solutions for a

strongly connected DFG can be generated. A systematic technique for generating these

28

solutions is presented in this section.

Recall that B is the fundamental loop matrix which can be expressed as B =

C | L], where C is an (\E\ - \V\ + 1) x (|V| - 1) matrix and L is an (\E\ -

|V| + l)x|£;|-|V| + l) lower triangular matrix with ones on the diagonal. The columns

of C correspond to the branches of the spanning tree of G which is chosen before Algo-

rithm FFL is used to find B, and the columns of L correspond to the links of G. The

rows of B correspond to {\E\ - \V\ + 1) linearly independent loops in G.

The algorithm for generating all scheduling solutions requires an interval to be written

for the folded weight of each branch of G and an equality to be written for the folded

weight of each link of G. The interval for the folded weight of a branch gives the range of

possible values for the number of folded delays for this branch in the folded architecture.

The equality for the folded weight of a link gives an expression for the number of delays

for the link in the folded architecture. Using these intervals and equalities, code can be

constructed to generate all possible scheduling solutions.

To determine these intervals and equalities, the elements of the fundamental loop

matrix are examined one-by-one in a row-by-row manner, starting at the top-left of the

matrix. Each time a "1" is encountered in the C submatrix of B such that this "1" is the

first "1" encountered in its column, an interval is specified for this branch. This interval,

which represents the range for the number of folded delays for the branch in the folded

architecture, takes into account the intervals and equalities previously determined in the

row-by-row scan of B.

Assume that the first "1" in column n of C is in row m, i.e., bmn = 1 and btn = 0 for all

/ < m. Let bj denote any row of B such that bkn = 1, i.e., loop (A;) is a fundamental loop

that contains the edge n. Since bmn is the first "1" in column n, m < k < \E\ - |V| + 1

29

must hold, i.e., bkn is in row m or in a row which is below row m. From Bf = B(JVw-du),

we get

b^f = b^(7Vw-du)^^6^=b[(Arw-du)=>/n+ £ bkjf3 = bT
k(Nw-du).

J'e£ jeE-{n}
(2.20)

Let D denote the set of edges encountered before reaching the element bmn in the row-

by-row scan of B. Mathematically, D is the set of edges j such that there exists an

element &„■ = 1 such that j + (\E\ - 1)* < n + {\E\ - l)m. Using D, we can rewrite (2.20)

as

fn + J2b^fj+ £ V,/j = b£(ATw-du). (2.21)
jeD jeE-D-{n}

The intervals and equalities for the edges in the set E - D - {n} have not yet been

determined; however, we do know from f > 0 that T,jeE-D-{n} bkjfj > 0. Using this in

(2.21) results in

/n + £^/^bA-(Ww-du).

Using this along with f > 0 specifies the interval for /„

0 < /„ < b£(ATw - du) - £ bkiSj, (2.22)
jeD

which must hold for all k such that bkn — 1.

Because the matrix L in B = is lower triangular with ones on the C | L

diagonal, the diagonal element of row m, lmm, is always the first "1" encountered in

column m of L during the row-by-row scan of B. In addition to using Zmm to denote this

element, it can also be denoted as bmn where n=\V\-l + m. When bmn is encountered

in the row-by-row scan of B such that n = |V| - 1 + m, an equality is written for fn

based on the equation b£f = b£(iVw - du). This equality, which uses the fact that

the intervals and equalities have already been determined for all edges in loop(m) except

30

edge n, is

fn = bl(Nw-du)-Ytbmjfj.
jeD

(2.23)

To summarize the above discussion, the matrix B is scanned in a row-by-row manner

starting with 6U. When bmn = 1 is encountered, if bmn is the first "1" in its column

of C, the interval in (2.22) is written for all k such that bkn = 1. When bmn = 1 is

encountered where n = \V\ - 1 + m, the equality in (2.23) is written.

The intervals for the |V| - 1 branches of G are denoted as lj for 1 < j < \V\ - 1.

An algorithm for writing these \V\ - 1 intervals for the branches and the |£| - |V| + 1

equalities for the links is given below. At any point in this algorithm, D is the set of

edges in G whose intervals or equalities have previously been determined.

Algorithm IE (Intervals and Equalities)

D = {};
FOR (m = 1 TO \E\ - \V\ + 1)

{
FOR (n = 1 TO \E\ - 1)

{
IF (bmn = 1 AND bkn = 0 VA; < m)

{
IF (1 <n< \V\ -1)

In = [Q,mm{a(m,n),a(m + l,n),o{\E\ - |V| + l,n)}];
D*- D + {n};

ELSE

/„ = b^(ATw - du) - J2jeD bmjff
D<r- D + {n};

31

where

a{K n) = i b* (Ww - du) - EjeD hjfj if bk = 1
| oo otherwise

From the intervals and equalities, code can be written to enumerate all possible

scheduling solutions. The general structure of the code is:

1. Write FOR loops for the intervals and write assignment statements for the equali-

ties in the same order that these intervals and equalities are generated in Algorithm

IE.

2. Test the link weights for non-negativity. If the link weights pass this test, the edge

weights represent a valid scheduling solution.

This technique generates all possible scheduling solutions because the FOR loop for

branch m assigns fm every integer value which is legal under the constraints Bf =

B(Nw - du) and f > 0, while taking into consideration the values of fc which are

already contained in a FOR loop or an assignment statement.

Example 2.4 In this example, we find all scheduling solutions for the DFG in Figure 2.7

assuming an iteration period of 4 and assuming that the computation time for each node

is unity.

JVw-d„=[-l 3 -1 -1 -1 -1-13 3
T

32

Figure 2.7: The data-flow graph used in Example 2.5.

and

Bf = B(7Vw - du)

110 0 0 10 0 0
0 110 0 0 10 0
0 0 10 10 0 10
0 0 0 10 0 10 1

/(I)
/(2)
/(3)
/(4)
/(5)
/(6)
/(7)
/(8)

L/(9)

Using Algorithm IE gives the intervals and equalities

Zi = [0,l] D = {1}
l2 = [0A-fi] D = {1,2}
fe = I-/1-/2 £» = {1,2,6}
23 = [0,1-/2] £» = {1,2,3,6}
h = I-/2-/3 £» = {1,2,3,6,7}
^5 = [0,1-/3] £» = {1,2,3,5,6,7}
h = I-/3-/5 £» = {1,2,3,5,6,7,8}
I4 = [0,1-/7] £> = {1,2,3,4,5,6,7,8}
h = l-JA~h D = E.

The code for finding all scheduling solutions is

for (fl = 0; fl <= 1; fl++)
for (f2 = 0; f2 <= 1 - fl; f2++)
{

f6 = 1 - fl - f2;
for (f3 = 0; f3 <= 1 - f2; f3++)
{

f7 = 1 - f2 - f3;

33

Table 2.1: The twelve valid scheduling solutions for the DFG in Figure 2.7.

sol'n # h h h h h h h h h Si S2 53 s4 S5 56
1 0 0 0 0 0 1 1 1 0 0 -2 0 -1 2
2 0 0 0 0 1 1 1 0 0 0 -2 -1 2
3 0 0 1 0 0 1 0 0 1 0 -2 0 2
4 0 0 1 1 0 1 0 0 0 0 -2 0 3
5 0 1 0 0 0 0 0 1 1 0 -1 0 2
6 0 1 0 1 0 0 0 1 0 0 -1 0 3
7 0 1 0 0 1 0 0 0 1 0 -1 2 0 2
8 0 1 0 1 1 0 0 0 0 0 -1 2 0 3
9 1 0 0 0 0 0 1 1 0 0 -1 2 1 0 3
10 1 0 0 0 1 0 1 0 0 0 -1 2 2 0 3
11 1 0 1 0 0 0 0 0 1 0 -1 2 2 1 3
12 1 0 1 1 0 0 0 0 0 0 -1 2 2 1 4

for (f5 = 0; f5 <= 1 - f3; f5++)
{

f8 = 1 - f3 - f5;
for (f4 = 0; f4 <= 1 - f7; f4++)
{

f9 = 1 - f4 - f7;
if (f6 >= 0 AND f7 >= 0 AND f8 >= 0 AND f9 >= 0)

print the values of fl through f9 and si through s6

}

There are twelve scheduling solutions for this DFG. The scheduling vector sR can be

computed from the folded edge vector f using (2.12). Using node 1 as the reference node,

the folded edge weights and the scheduling values for the nodes are listed in Table 2.1.

Once all possible f vectors have been found and the corresponding s vectors have been

computed using (2.12), the r and p vectors can be found from s (recall that s = p + iVr)

using r = [-^J and p = s - ATr. It can be shown that these expressions for r and p result

in

34

• 0 < p < N — 1. This means that pi is indeed a time partition satisfying 0 < pi <

N-l.

• wr > 0 and Bw = Bwr. This means that r is a valid retiming solution of G.

To summarize, the following four steps can be used to find all valid schedules for a

strongly connected DFG:

1. Find all vectors f such that f > 0 and Bf = B(iVw - du).

2. Compute s using (2.12) and s{m) = 0, where m is the reference node.

3-r=L*J.

4. p = s — JVr.

These four steps give the valid schedules for G. The retiming vector r corresponds

to a valid retiming solution for G, and the elements of the partition vector p satisfy

0<Pi<N- 1.

For each legal folding vector f, the technique in this section finds exactly one schedule

s, which contains information about the time partitions p and the retiming values r of

the nodes. However, there are actually N schedules which map the DFG to a folded

architecture which has f delays on its edges. We call these N solutions equivalent sched-

ules, and we call the solution found using Step 2 above the fundamental schedule s of the

folding vector f. The N equivalent schedules are s + fcl for 0 < k < N — 1. Replacing

s by s + kl has two effects. First, the switching instance Nl + j (0 < j < N — 1) in

the folded architecture becomes Nl + ((j' + k)modN). Second, if scheduling is viewed

as preprocessing the DFG by retiming (finding r) and then assigning time partitions

(finding p), the preprocessed DFG may change because r may change. A nice property

35

of the technique presented in this section is that it finds the fundamental schedule s for

each folding vector f, and the N equivalent schedules are implicitly known to be s + kl

for 0 < k < N - 1.

2.4.2 Generating All Retiming Solutions

Since retiming is a special case of scheduling, the techniques in Section 2.4.1 for gen-

erating all scheduling solutions can also be used to generate all retiming solutions by

replacing f with wr and letting N = 1 and du = 0.

Example 2.5 In this example, we generate the edge intervals and equalities for the graph

in Figure 2.7. The fundamental loop matrix for this graph is given in (2.1), the weight

vector is

w = o i o o o o o i ilT

[I 1111 . The intervals and equalities are generated in the following

order using Algorithm IE.

Xi = [0,l] D = {1}
Zb = [0,l-türi] £> = {1,2}

wr6 = 1 - tor, - wT2 D = {1,2,6}
13 = [0,1 - wT2] D = {1,2,3,6}

wr7 = 1 - wr2 - uv3 D = {1,2,3,6,7}
I5 = [0,1 - wr3] D = {1,2,3,5,6,7}

wTs = I - wT3 - wrs D = {1,2,3,5,6,7,8}
14 = [0,1 - wT7] £» = {1,2,3,4,5,6,7,8}

wrg = 1 - wu - wrr D = E

Using these intervals and equalities, the code which generates all retiming solutions
for the DFG in Figure 2.7 is given below. Note that xi is used to represent wTi.

for (xl = 0; xl <= 1; xl++)
for (x2 = 0; x2 <= 1 - xl; x2++)
{

x6 = 1 - xl - x2;
for (x3 = 0; x3 <= 1 - x2; x3++)

36

x7 = 1 - x2 - x3;
for (x5 = 0; x5 <= 1 - x3; x5++)

{
x8 = 1 - x3 - x5;
for (x4 = 0; x4 <= 1 - x7; x4++)

{
x9 = 1 - x4 - x7;
if (x6 >= 0 AND x7 >= 0 AND x8 >= 0 AND x9 >= 0)

print the values of xl through x9 and rl through r6

}
}

}

There are twelve retiming solutions for the DFG. The retiming vector r is computed

from the retimed weight vector wr using (2.16) and r(l) = 0, where node 1 is the refer-

ence node. The retimed edge weights and the retiming values for the nodes are listed in

Table 2.2.

If a DFG is not strongly connected, it is possible to add edges to the DFG to make it

strongly connected so all retiming solutions can be generated. Consider the biquad filter

in Figure 2.8(a). This graph is not strongly connected because, for example, there is no

path from the output node to the input node. To make this graph strongly connected,

it can be modified by adding an edge from the output node to the input node as shown

in Figure 2.8(b). The modified graph has a new loop IN -» OUT -> IN which has one

delay. This loop forces the latency of the DFG to be one cycle. Using the techniques

presented in this section, we find that there are 224 retiming solutions for the DFG in

Figure 2.8(b).

As another example, consider the correlator in Figure 2.9 which is used to demonstrate

retiming in [27]. Using the techniques presented in this section, 143 retiming solutions

can be found for this DFG. This result was also reported in [30].

37

Table 2.2: The twelve valid retiming solutions for the DFG in Figure 2.7.

sol'n # wn wr2 Wr3 wu Wrs Wr6 Wr7 ">r8 «v9
1 0 0 0 0 0 1 1 1 0
2 0 0 0 0 1 1 1 0 0
3 0 0 1 0 0 1 0 0 1
4 0 0 1 1 0 1 0 0 0
5 0 1 0 0 0 0 0 1 1
6 0 1 0 1 0 0 0 1 0
7 0 1 0 0 1 0 0 0 1
8 0 1 0 1 1 0 0 0 0
9 1 0 0 0 0 0 1 1 0
10 1 0 0 0 1 0 1 0 0
11 1 0 1 0 0 0 0 0 1
12 1 0 1 1 0 0 0 0 0

sol'n # n T2 rz n T5 re
1 0 -1 0 -1 -1 0
2 0 -1 0 0 -1 0
3 0 -1 0 0 0 0
4 0 -1 0 0 0 1
5 0 0 0 0 0 0
6 0 0 0 0 0 1
7 0 0 0 1 0 0
8 0 0 0 1 0 1
9 0 0 1 0 0 1
10 0 0 1 1 0 1
11 0 0 1 1 1 1
12 0 0 1 1 1 2

38

OUT IN

Figure 2.8: (a) The biquad filter. This graph is not strongly connected, (b) A modified
version of the biquad filter. This graph is strongly connected.

(DC
/ " \

Figure 2.9: The correlator example which has 143 retiming solutions.

2.4.3 Bit-Serial Scheduling

Since the bit-serial scheduling formulation has the same form as the bit-parallel schedul-

ing formulation, the techniques used to generate all bit-parallel scheduling solutions can

be used to generate all bit-serial scheduling solutions by replacing f with b and replacing

Nw - du with Wvr - (tu - t„).

The values of r and p can be computed from s (recall that s = p + Wr) using r = [p^J

and p = s — Wr. It can be shown that these expressions for r and p result in

• 0 < p < AT — 1. This means that pi is indeed a time partition satisfying 0 < Pi <

N-l.

• wr > 0 and Bw = Bwr if tu > tv for all edges u A v as shown in Figure 2.6. This

39

means that r is a valid retiming solution of G when tu > tv for all e G E.

Example 2.6 In this example, we generate all possible schedules for the bit-serial im-

plementation of the third-order all-pole filter shown in Figure 2.10 assuming two's com-

plement number representation, data wordlength is 8 (i.e., W = 8), and coefficient

wordlength is 4-

x(n) -@

&■

-1/4

y(n)

D

x

1/8

©-^H
1/2 D

Figure 2.10: A third-order all-pole IIR filter.

The first step is to determine the timing diagram for each operator. The circuit and

timing diagram for an adder are given in Figure 2.5. The circuits and timing diagrams

for multiplication by -1/4, 1/8, and 1/2 are given in parts (a), (b), and (c), respectively,

of Figure 2.11. Using these sub-circuits, the timing diagram for the filter is shown in

Figure 2.12

The fundamental loop matrix is

In addition, we have

w =

"U

10 0 10 10 0
0 10 0 1110
0 0 10 0 111

12 3 0 0 0 0 0

1114 3 111

40

i.iio D -f-o
 JK,

A—(x)-— B

—dH^j

'TXTTI
mh

i^n {DH

^>^

HM°|-0—- B ^X

(b)

0 00!

A—(xV- B 4L^ |o— B
^K^-

(c)

Figure 2.11: The circuits and timing diagrams for the three multipliers in Figure 2.10.

and t„ = 0. The equation B(Ww — (tu — t„)) = Bb is

' 1 0 0 1 0 1 0 0 ' 2
0 1 0 0 1110 b = 10
0 0 10 0 111 20

ualitics are

Zi=[0,2]
I» = [0,2-6i]
be = 2 - bi - 64
I2 = [0,10 - be]
Z5 = [0,10 - 62 - be]
b7 = 10 - b2 - 65 - 66

X3 = [0,20-66-67]
68 = 20 - 63 - be ■ -b7

There are 6103 valid scheduling solutions. To avoid examining all of these solutions,

let us examine only those solutions which use the minimum number of serial registers.

The number of serial registers is

D = max(&i, 62,63) + 64 + 65 + b6 + 67 + fa.

41

Figure 2.12: The timing diagram for the filter in Figure 2.10. The edge labels are shown
in parentheses to avoid confusion with the timing values.

The minimum number of registers for all 6103 valid scheduling solutions is £>mj„ = 20,

and there are 330 solutions which use 20 registers. One solution that uses 20 registers is

b = [0000028 10]T

s = [o-3-12 -7 -15 -23

r = [o-l -2

p = [0 5 4 1 1 1

1 -2 -3

T

The complete architecture for this solution is shown in Figure 2.13. This architecture

uses 20 registers, not including the registers which are internal to the processing units.

2.5 Bit-Parallel Scheduling with Resource Constraints

When all of the schedules are generated for a DFG, this may include many schedules

which require more hardware resources than are available for the implementation. In

this section, we describe two methods for finding the schedules which satisfy a given

42

1—• <—hi+i i

'—-§|—[x>

Figure 2.13: An architecture for the third-order all-pole filter. This architecture uses the
minimum number of registers (20), not including the registers which are internal to the
processing units.

set of resource constraints. In the first method (the solution-save method), we generate

all scheduling solutions and then save only the solutions which satisfy the resource con-

straints. In the second method (the solution-generate method), we only generate those

scheduling solutions which satisfy the resource constraints.

2.5.1 The Solution-Save Method

The number of hardware modules required by a scheduled DFG can be determined

from p. For example, let mn be the number of multiplication operations scheduled to

time partition n (0 < n < N - 1), and let an be the number of addition operations

scheduled to time partition n. Then the number of multipliers required by the schedule

is m = maxo<„<AT_1{mn} and the number of adders is a — maxo<n<Ar_i{an}.

43

Example 2.7 In this example we find all scheduling solutions which require 1 multiplier

and 1 adder for the biquad filter in Figure 2.8(b) assuming an iteration period of N — 4

and assuming that addition and multiplication require 1 and 2 units of time, respectively.

Nodes 1, 2, 7, and 8 are addition operations and nodes 3, 4, 5, and 6 are multiplication

operations.

The fundamental loop matrix is

100000010000
011000001000

B= 000001110100
000100001010
000010010101

and B(4w -du)= 20 3 4 7. The intervals and equalities are

Ii = [0,2]
h = 2 - h
X2 = [0,0]^/2=0
l3 = [0,0-/2]=>/3 = 0
h = 0 - h ~ h => h = 0
2"e = [0,3-/8]
l7 = [0,3-/6-/8]
/io = 2 - /e - h - h
X, = [0,4-/9]
/n = 4 - fA ~ h
Is = [0,7-/8-/io]
/12 = 7 - /5 - /8 - /10

There is a total of 625 valid scheduling solutions for this example; however, only 6 of

these solutions use only 1 adder and 1 multiplier. Tables 2.3 and 2.4 give the details of

these solutions, and the DFGs for these six solutions are given in Figure 2.14-

Example 2.8 Consider the 4-stage pipelined 8-th order all-pole lattice filter in Fig-

ure 2.15. Edge 11 has been added to this filter to make it strongly connected. For

the iteration period N = 2, this filter has 450 scheduling solutions, and 99 of these

schedules use 2 adders and 2 multipliers. Of these 99 schedules, the minimum possi-

44

Table 2.3: The f and s values for the six valid scheduling solutions for the biquad filter
which use 1 adder and 1 multiplier for an iteration period of 4.

sol'n # h h h h h h h h h /io hi /12

1 0 0 2 3 1 1 0 0 2 3
2 0 0 3 2 1 1 0 0 1 4
3 0 0 3 6 1 1 0 0 1 0
4 0 0 1 3 2 0 0 0 3 3
5 0 0 3 1 2 0 0 0 1 5
6 0 0 3 5 2 0 0 0 1 1

sol'n # s\ S2 S3 H S5 ■S6 •57 S8

1 0 -1 -3 -5 -2 -4 2
2 0 -1 -3 -4 -2 -5 2
3 0 -1 -3 -4 -2 -1 2
4 0 -1 -3 -6 -1 -4 2
5 0 -1 -3 -4 -1 -6 2
6 0 -1 -3 -4 -1 -2 2

Table 2.4: The r and p values for the six valid scheduling solutions for the biquad filter
lich use 1 adder and 1 i nultiplier for an iteration period of 4
sol'n # n T2 7*3 n rs Tfi H r» Pi P2 P3 PA P5 P6 Pi P8

1 0 -1 -1 -2 -1 -1 0 0 0 3 3 2 0 2
2 0 -1 -1 -1 -1 -2 0 0 0 3 0 2 3 2
3 0 -1 -1 -1 -1 -1 0 0 0 3 0 2 3 2
4 0 -1 -1 -2 -1 -1 0 0 0 3 2 3 0 2
5 0 -1 -1 -1 -1 -2 0 0 0 3 0 3 2 2
6 0 -1 -1 -1 -1 -1 0 0 0 3 0 3 2 2

45

Figure 2.14: The six scheduling solutions for the biquad filter which use 1 adder and 1
multiplier. The number in parentheses next to a node is the time partition to which the
node is scheduled.

ble number of registers required for the implementation is 10, and only 2 of these 99

T
■1 schedules use 10 registers. These schedules are s = 0 3 1 —2 1 4 2

r iT
and s = 03 1—2 2530. The minimum number of registers is computed

using the techniques in [46] with the modification that the results reported here assume

that for a processor that is pipelined by Pu stages, the Pu pipelining registers cannot be

used by output samples from other processors, while the results in [46] allow one pipelin-

ing register to be shared by other processors. For the iteration period N = 4, the filter in

Figure 2.15 has 910910 scheduling solutions, and 10083 of these schedules use 1 adder

and 1 multiplier. Of these 10083 schedules, the minimum possible number of registers

required for the implementation is 11, and 21 of these 10083 solutions use 11 registers.

2.5.2 The Solution-Generate Method

This section describes a technique for exhaustively generating only the bit-parallel sched-

ules which can be implemented on a given set of hardware resources. Using this tech-

46

,4D

:(iO)

OUT

Figure 2.15: The 4-stage pipelined 8-th order all-pole lattice filter. The edge labels are
in parentheses to avoid confusion with the node labels. One possible spanning tree is
shown in solid lines.

nique, we can avoid.generating those schedules which use more resources than are avail-

able, and this allows us to generate the desirable schedules in considerably less time.

The following theorem is needed so we can construct B in a manner that allows us to

perform exhaustive bit-parallel scheduling with resource constraints.

Theorem 2.7 In Algorithm FFL, let vj be the node that the link Ik is incident from. If

vj is in GR , then there are no branches in loop(k) which are also in (G—GR). Ifvj is in

{G — GR), then there are branches in loop(k) which are in (G — GR), and these branches

form an elementary directed path which xue shall denote as VQ -V vi -4- • • • -+1 u,/_i -4 vj.

Proof: The loop denoted as loop(Ar) in Algorithm FFL has the form of Figure 2.16(a)

or 2.16(b), where VR is the root node of the spanning tree and VIN is a node in GR .

Recall from Theorem 2.5 that the form in Figure 2.16(b) results from vj -4- vix ~»

VCOMMON ~» VR ~> vcoMMON ~~* vj- Both forms of loop(/c) can be generalized as the

loop in Figure 2.16(c), where V[^, Vy, and ps are in GR . The proof has two cases,

which take into account whether or not node vj is in GR .

Case I: vj is in G{
R
]. If the path pA in Figure 2.16(c) has any edges in (G - G^), then

a subpath vi ~> v2 of pA must exist in (G - G^R), where u2 is in GR\ The last edge in

v\ ~» U2, i.e., the edge that is incident into v2, cannot be a link because l^ is the only

47

(a)

(vCOMj

(b) (c)

Figure 2.16: (a) One form of loop(fc): vj 4 vIN ~» vR ~> uj. Link lk is in (G-G$) and

path p2 is in GR. (b) The other form of loop(fc): vj 4 u/w ~> VQOMMON ~> "/• Link

/it is in (G - Gß) and path p4 is in GR. (c) Equivalent loop(/c): vj 4 «/# ~* wy ~> uj.

Link /fe is in (G-GR) and pathps is in GR. The forms in (a) and (b) can be generalized
to the form in (c).

link which is in loop(Ar) and in (G - G$) (recall that loop (A;) is in G$ UGTU lk). The

last edge in vi ~> u2 cannot be a branch because Lemma 2.3 says there is no branch in

(G - GR) which is incident into a node in GR\ Therefore, if vj is in G%\ pA can have

no edges in (G - G^'), and there are no branches that are in loop(/c) and in (G - G^).

Case II: v., is in (G - G{
R
]). The edge incident into vj in loop(Ä) is in (G - G{

R
]) (if

not, vj would be in GR), and this edge is a branch because lk is the only link which is

in loop(A;) and in (G - Gfc). We denote the branch in loop(A;) which is incident into vj

as vj_i 4 vj. Similarly, ifvj-i is in (G - G{
R
]), then branch bj-i exists in (G - G^)

to form the path u/_2 4' «./_! 4 vj. On the other hand, if vj-i is in G^, then

by using Case I of this proof, we know that the path vy ~> vj-i can have no edges

,(*) in (G - GR). Continuing this argument, we see that when vj is in (G - GR), there

are branches which are in loop(fc) and in (G - GR), and these branches form the path (*)>

u0 -» Vi
&./

-> Vi —V • • • —> uj-i -} uj. D

48

As described in Section 2.2.3, we construct the fundamental loop matrix B by letting

loop(/c) from Algorithm FFL be the A>th row of B. The edges in the graph are numbered

such that the first (|V| - 1) columns of B correspond to the branches of the spanning

tree of G, and the remaining (\E\ - |V| + 1) columns correspond to the links. From

Theorem 2.7 we know that if there are branches in loop(A;) which are in (G — G^), then

these branches form the elementary directed path VQ -V v\ -4 • • • J-+x vj-i -4 vj. In

other words, if loop(fc) contains branches which have not appeared in previous loops, then

these branches form a path. These branches are assigned to the next available columns

of B in the order that they appear in the path VQ -V v\ -4 ■ ■ • -41 vj^i -4 vj. The link

Ik is assigned to the (| V\ — 1 + fc)-th column of B. By constructing the fundamental loop

matrix in this manner, it still has the form given in (2.3); however, it now allows us to

use Algorithm IE to determine the schedule values of the nodes directly.

The interval ln for the scheduling problem is found by enforcing (2.22) for all k

such that 6jt„ = 1. Assume that the edge n is incident into node vn and incident from

node un, i.e., un -> vn. From (2.7), the expression for the n-th folded edge weight is

/„ = Nwn — dUn + sVn — ,sUn. Substituting this into the interval for fn gives

0 < Nwn - dUn + aVn - sUn < b[(Afw - du) - £ hjSj
jeD

for all k such that bkn = 1- Solving for sVn gives

-Nwn + dUn + sUn < sVn < -Nwn + dUn + sUn + bJ{Nw - du) - ^ hjfj
jeD

for all k such that 6/tn = 1.

To avoid confusion with the interval for /„ (recall that we denoted this as In), the

interval for sVn is denoted as 1%. This notation specifies that 1% is an interval for the

scheduling value of the node that edge n is incident into. Let otn = —Nwn + dUn + sUn.

49

Then the interval Tn is simply the interval ln from Algorithm IE with an added to the

lower and upper bounds. We shall denote this as Tn = ln + an.

Using the technique described in this section for constructing the fundamental loop

matrix B, Algorithm IE can be used to determine the intervals In for the folded edge

weights, and the intervals for the scheduling values for the nodes can be found using

Xv
n=ln + an.

Example 2.9 In this example, all possible scheduling solutions are generated for the

DFG in Figure 2.17 for an iteration period of A by generating the solutions for s directly.

The computation time for each node is assumed to be unity. Using the technique described

in this section for constructing B results in

B

110 0 0 10 0 0
0 110 0 0 10 0
0 0 110 0 0 10
0 0 0 0 10 10 1

(2.24)

Notice that the edge labels in Figure 2.17 are different than those used in Figure 2.7. The

labels have been changed so the column numbers of B in (2.24) correspond to the edge

labels in Figure 2.17. Using B(Nw - du) = l4xi, the intervals are given in Table 2.5.

Note that in this table fn = Nwn - dUn + sVn - sUn has been used to simplify the upper

bounds of the 1% intervals.

Figure 2.17: The graph scheduled in Example 2.9.

50

Table 2.5: The intervals for Example 2.9.

n -Ln an ^
1
2
3
4
5

[0,1]
[0,l-/i]
[0,1-/2]
[0,1-/3]
[0,1-/7]

1+5!
-3 + 53
I + S2
I+S5
I + S3

[1,2]
[-3 + 53,-1]

[l + 52,-l + 53]
[1 +55,3 + S2]
[1 + 53,3 + S5]

The code for this example is

for (s3 = 1; s3 <= 2; s3++)
for (s2 = -3 + s3; s2 <= -1; s2++)
for (s5 = 1 + s2; s5 <= -1 + s3; s5++)
for (s4 = 1 + s5; s4 <= 3 + s2; s4++)
for (s6 = 1 + s3; s6 <= 3 + s5; s6++)

{
Compute link weights. If all positive, print si through s6

The twelve solutions for s generated from this code are the same as those listed in Ta-

ble 2.1.

By determining the values of the schedule vector directly rather than first determining

the folding vector and then computing the schedule vector, we can generate only those

schedules which can be executed using a limited number of hardware modules. This is

done using a programming technique that avoids the solutions which use more resources

than are available. For each operation type (e.g., addition or multiplication), an array

of N data elements is used such that there is one element for each time partition from

0 to N — 1. Each data element contains the number of operations of a given type that

is currently scheduled to that time partition. Each data element also keeps track of

the next time partition in which the hardware resources for that particular operation

51

type are not fully utilized. By keeping track of this information, when we generate a

new schedule by incrementing the schedule value for a node, the node is scheduled to a

time partition in which the hardware resources for the operation are not already fully

utilized. The end result is that we do not generate the schedules that use more resources

than are available, so we can generate all scheduling solutions for a given set of resource

constraints much more quickly than if we find all possible schedules and keep only those

schedules which satisfy the resource constraints.

The advantages of including the resource constraints are demonstrated using the

fifth-order wave digital elliptic filter shown in Figure 2.18. We assume that addition

D D

OUT

Figure 2.18: The fifth-order wave digital elliptic filter. The branches of the spanning tree
used in Algorithm FFL is shown with solid lines, and the links are shown with dotted
lines.

and multiplication require 1 and 2 units of time, respectively, and that hardware adders

and multipliers are pipelined by 1 and 2 stages, respectively. The results of exhaustively

generating the scheduling solutions without considering resource constraints are shown

in Table 2.6. The results of exhaustively generating the scheduling solutions which can

be implemented on a given number of hardware adders and multipliers are shown on

the left side of Table 2.7. From these tables, we can see that the time it takes to

exhaustively generate only the scheduling solutions which satisfy a given set of resource

52

Table 2.6: The results of exhaustively scheduling the filter in Figure 2.18 using the
techniques presented in Section 2.4.1.

iter period # sched solutions CPU time (sec)
16
17
18

9900
4669095

580432280

0.0342
16.2
2020

Table 2.7: The results of exhaustively scheduling the filter in Figure 2.18 for a given set
of resource constraints using the techniques presented in Section 2.5.2. The left part of
the table considers scheduling to the minimum possible number of adders and multipliers
for the given iteration period, and the right part considers scheduling to the minimum
number of adders, multipliers, and registers.

iter
period

resources
(add,mult)

solns
CPU time

(sec)
resources

(add,mult,reg)
solns

16 (3,1) 77 0.00288 (3, 1, 7) 21
17 (2,1) 98 0.0518 (2, 1, 7) 73
18 (2,1) 131983 11.1 (2, 1, 7) 40723
19 (2,1) 33948842 1700 (2, 1, 7) 3056246

constraints is orders of magnitude faster than the time it takes to exhaustively generate

all scheduling solutions. The expressions in [46] can be used to compute the number of

registers required by a given schedule. The results of this are shown on the right side

of Table 2.7. Note that these results assume that internal pipelining registers cannot

be shared between processors, while the results in [46] assume that internal pipelining

registers can be shared between processors.

2.6 Conclusions

Formulations have been presented in this chapter for the bit-parallel and bit-serial

scheduling problems, and we have shown that the retiming formulation introduced in

[30] is a special case of our bit-parallel scheduling formulation. Techniques have been

developed and demonstrated for exhaustively generating all unique retiming and schedul-

53

ing solutions for a strongly connected DFG. These techniques allow a circuit designer to

explore the space of possible implementations.

In addition to the technique for exhaustively generating all unique bit-parallel schedul-

ing solutions, a technique was also developed for exhaustively generating only the bit-

parallel scheduling solutions which satisfy a given set of resource constraints. Our results

indicate that this technique can generate schedules in CPU times that are greater than

two orders of magnitude faster than generating all solutions.

One advantage of the formulations presented in this chapter is that they allow us to

understand how retiming and scheduling are similar and that retiming is an important

part of scheduling. Specifically, we show that retiming is a special case of scheduling,

and we include retiming in our scheduling formulations to make them general and to

make visible the role of retiming during scheduling.

The numbers reported in Tables 2.6 and 2.7 show some scheduling results for the fifth-

order wave digital elliptic filter. Since this filter is often used to demonstrate scheduling

techniques, the numbers in these tables provide some benchmarks for gauging the effec-

tiveness of scheduling algorithms. These numbers indicate that the number of schedules

increases dramatically as the difference between the iteration period and the iteration

bound becomes larger. Therefore, for practical applications, our exhaustive scheduling

techniques are most useful when the iteration period is at or near the iteration bound.

54

Chapter 3

Register Minimization in Folded
Architectures

3.1 Introduction

In this chapter, expressions are derived for the minimum number of registers required

to implement a statically scheduled DFG. Two cases are considered, namely, the cases

where retiming is and is not allowed to be perfomed on the scheduled DFG.

We begin with a motivating example. After the DFG has been scheduled, specifica-

tions for the communication paths between hardware modules can be determined using

systematic folding techniques [28]. Consider the multiply-add operation in Figure 3.1(a),

which is an algorithm DFG describing y(n) = au(n) + v(n). Assume this multiply-add

is part of a larger DFG which is to be implemented in hardware with an iteration period

of 10, i.e., each node in the algorithm DFG will be executed by the hardware exactly

once every 10 time units. If the multiply operation is executed by one-stage pipelined

hardware module HM at time units 10/ + 2, and the add operation is executed by hard-

ware module HA at 10/ + 8 for integer / iterations, then the connection between the

multiplication and addition operations in Figure 3.1(a) is mapped to the data path in

Figure 3.1(b) (details of how this data path specification is derived are provided in Sec-

55

tion 3.2.2). Upon examination of Figure 3.1(b), one observes that at any given time,

no more than one of the five delays labeled "5D" between EM and HA is storing a

word of data that will actually be consumed by HA- TO avoid the inefficient architec-

ture that would result from direct implementation of Figure 3.1(b) in silicon, memory

management is used in high-level synthesis tools to derive efficient data paths between

processing modules.

u(n)

v(n)—(£}— y(n)

(a)

10/+8

 ; (b)

Figure 3.1: (a) Algorithm DFG describing y(n) = au{n) + v(n). (b) Data path specifi-
cation derived from the algorithm DFG for an iteration period of 10.

Memory management consists of choosing the type of registers, number of registers,

and allocation of data to these registers. The type of registers is usually dictated by

the architecture model used. Throughout this chapter, the term "register" is used to

describe a storage location capable of storing one word of data. We use the term "memory

model" for a general rule which describes how data can be allocated to the registers. For

example, one memory model might force each functional unit in the architecture to store

its output samples in a set of registers dedicated to only that functional unit, while

another memory model might lift this restriction and allow all of the functional units

to share a common set of registers. Naturally, the memory model affects the number

of registers and the allocation of data to the registers. In this chapter, we compute

56

the minimum number of registers required for a statically scheduled DFG under various

memory models. The allocation of the data to registers is an NP-complete problem for

which heuristic algorithms have been suggested [51, 52, 53].

Techniques for computing the minimum number of registers required by a statically

scheduled DFG have been considered in the past. The left-edge algorithm has been

used to find the minimum number of registers and allocate data to these registers [54].

The life-time chart and circular life-time graph can be used to determine the minimum

number of registers in any DSP circuit [29]. The circular life-time graph is particularly

useful because it graphically takes into account the repetitive and periodic nature of DSP

operations. These graphs have been used, for example, to determine the size of register

files in DSP architectures [52].

In this chapter, we use life-time analysis to derive closed-form expressions for the

minimum number of registers required by a statically scheduled DSP program. These

techniques offer several advantages over previously used techniques. First, the closed-

form expressions can be used to represent cost functions for high-level synthesis opti-

mization tools. An example of using these closed-form expressions in an integer linear

programming (ILP) formulation is given in Section 3.4. Second, the analytical tools we

introduce can be used to derive expressions for the minimum number of registers un-

der a variety of memory models which describe how data can be allocated to memory.

This is important because the target architecture may impose constraints on how data

can be routed to memory. We derive expressions for three memory models, namely the

operation-constrained, processor-constrained, and unconstrained memory models. For

the unconstrained memory model, where all memory-sharing constraints are relaxed,

the minimum number of registers required to implement a DFG with m nodes can be

computed in 0(m2) time. A third advantage of the analytical tools we introduce is

57

that they can be used to determine memory requirements for more complex algorithm

descriptions, such as DFGs which have multiplexers in the data paths.

Pipelining and retiming [27] are powerful tools used in high-level synthesis. Pipelining

can be considered to be a special case of retiming. We consider an integer linear pro-

gramming solution to the retiming problem, referred to as the minimum physical storage

location (MPSL) retiming, which retimes a scheduled DFG such that its memory re-

quirements are minimized under the unconstrained memory model while the schedule

remains valid for the retimed DFG. We use MPSL retiming to retime a DFG which

has been scheduled using the MARS design system [26], and we compare the memory

requirements of MARS to a globally optimal solution. Our results show that the MARS

system gives optimal or close-to-optimal results in terms of memory requirements.

The results we present can be used throughout the high-level synthesis process. Ex-

pressions for the minimum number of registers can be used during scheduling to help

determine the total cost of the architecture. After scheduling, MPSL retiming can be

used to optimally retime a DFG in terms of registers required for its implementation.

During memory management, our techniques can be used to optimize the hardware de-

sign in terms of the number of registers required. For instance, given the scheduled DFG

and the desired memory model, the minimum number of registers required can be de-

termined, and register allocation can be performed by an appropriate register allocation

scheme which guarantees completion (e.g., forward-backward register allocation [51]).

Expressions for the minimum number of registers can also be used to evaluate the effec-

tiveness of register allocation schemes which are based on heuristics, since some schemes

may require more memory than the theoretical lower bound in order to maintain simple

control structures.

This chapter is organized as follows. The algorithm DFG model and the pipelined pro-

58

cessor model used in the chapter are described in Section 3.2. This section also describes

the systematic folding techniques which are used as a framework for our derivations.

Expressions are derived in Section 3.3 to compute the minimum number of registers re-

quired to implement a statically scheduled DFG for various memory-sharing models. In

Section 3.4, memory minimization is considered simultaneously with retiming, and our

conclusions are presented in Section 3.5.

3.2 Preliminaries

The DFG model we consider represents periodic and nonterminating data-flow programs.

We consider homogeneous (single-rate) DFGs, where each node is executed once per

iteration; however, the techniques used in this chapter can also be applied to multirate

DFGs since any well-behaved multirate DFG can be transformed into an equivalent

single-rate DFG [55], [56]. Memory requirements for multirate DSP program descriptions

have also been considered [57], [58]. In each iteration of the homogeneous DFGs we

consider, a node consumes exactly one sample from each arc that is input to the node

and produces exactly one sample which is available at the output of the node. Each

occurrence of a data path connecting the output of a node to an input of a node is

called an arc. Figure 3.2(a) shows one representation of a DFG which contains four arcs,

namely arc U -¥ V\ with 0 delays, arc U -> V\ with 4 delays, arc U -> V2 with 2 delays,

and arc U -» U with 1 delay. Figure 3.2(b) shows another representation of the same

DFG. In this chapter, the DFG simply provides a program description. As a result, the

two representations in Figures 3.2(a) and (b) can be considered equivalent since they

describe the same DSP program.

The DFG is assumed to have no multiplexers and no conditional branches. When

computing the number of registers required to implement a DFG, G, it is assumed that

59

T"\ < t D '
^

2D
t

D \ V2J
(a)

Figure 3.2: (a) A DFG with four arcs, (b) Equivalent representation of the DFG shown
in (a).

all arcs in G have both a source node and a sink node in G. Arcs which communicate

with the outside world can be included by introducing dummy nodes.

The following subsections describe the pipelined processor model used in this chapter

and the systematic folding techniques which form a framework for our derivations.

3.2.1 The Pipelined Processor Model

Consider a processor H with P pipelining stages and computational latency of T units.

This pipelined processor is often represented as shown in Figure 3.3(a). The hardware

in the dashed box in Figure 3.3(a) is referred to as H^p\ A more explicit representation

of H^ is shown in Figure 3.3(b), where the computational latency of each sub-oper-

ator Hi,#2,•••jHp is assumed to be T/P. The dashed box shows that the P delays

£>i, £>2i • • •, Dp are internal to H^ and cannot be accessed by other data paths.

Consider the implementation of the pipelined processor H shown in Figure 3.3(c).

The hardware in the dashed box in Figure 3.3(c) is referred to as H^p'\ In this case, the

P' = P - 1 delays Dv, D2,..., Dp-i are internal to H^p'\ but the delay DP is external

60

to H(p > and can be accessed by other data paths. A simplified version of this model

is shown in Figure 3.3(d). The structure shown in Figure 3.3(d) may not be acceptable

for some applications due to the multiplexer delay, TMUX- The final stage of pipelined

processor H has a computational latency of T//p +TMUX, where Tnp is the computational

latency of Hp. If T//p +TMUX is greater than the desired clock period, TQESIRED, then

the multiplexer must be eliminated and the delay Dp can be dedicated to processor H

as in Figure 3.3(b). Throughout this chapter, we assume T//p + TMUX < TDESIRED, so

that the pipelined processor model H^p"> can be used and the delay Dp can be accessed

by outputs of other processors, as shown in Figure 3.3(d). We also assume P > 1 so

that P' is nonnegative. When computing the minimum number of registers required

to implement a statically scheduled DFG, we do not count the P' registers which are

internal to the processor.

w

H
* I

(P)

H PD

(a)

H (P)

w H D, D2-~.~-.Dp.

(c)

Figure 3.3: (a) Implementation of P-stage pipelined processor H with lumped pipelining
delays, (b) Pipelined processor with separated internal pipelining delays, (c) Pipelined
processor where the last pipelining delay can be shared with other data paths, (d) A
simplified version of (c).

61

3.2.2 Systematic Folding Techniques

The folding transformation formalized in [28] gives a method of systematically determin-

ing control circuit specifications from a statically scheduled DFG. This section presents

a brief introduction to these systematic folding techniques.

Consider the algorithm DFG in Figure 3.4(a) which contains the arc U -> V with

i delays. In this system, the result of the l-th iteration of operation U is used for the

(/ + i)-th iteration of operation V. Let TV be the folding factor, i.e., TV operations are

executed using a single hardware operator. Furthermore, let u and v be the folding

orders of U and V, respectively. The folding order describes the time partition, or the

time unit modulo TV, in which an operation is scheduled, i.e., the l-th iteration of U is

scheduled to be executed by hardware operator Hy at time unit (Nl + u). Similarly, the

(/ + z)-th iteration of V is scheduled to be executed by hardware operator Hy at time

unit TV(/ + i) + v. If Hy has Pu pipelining stages and the pipelined processor model

H(p) (see Figure 3.3(d)) is used, then the result of the l-th iteration of U is output from

H\P at (Nl + u + P[f), where P'v = Pv - 1. The folding process maps each arc U -»• V

with i delays in the algorithm DFG to an arc in the architecture DFG. We denote by

Dp{U ->■ V) the number of delays on the arc in the architecture DFG which is the result

of folding arc U -> V in the algorithm DFG. This delay is the difference between the

execution time of the (/ + i)-th iteration of V and the time that the result of the l-th

iteration of U is available, i.e.,

DF{U ->V) = N{l + i)+v-{M + u + P{j) = Ni-P[j + v-u. (3.1)

Note that the number of folded delays is iteration independent, i.e., Dp(U -> V) is

independent of /. Hardware operator Hy, which is pipelined by Py stages and has P\j

internal pipelining delays, is connected to hardware operator Hy at switching instance

62

(Nl + v) with DF(U -»• V) delays, as shown in Figure 3.4(b). This derivation differs

slightly from the derivation in [28] since here we use the pipelined processor model H^pn>

(see Figure 3.3(d)), where the pipelined processor model #(p) (see Figure 3.3(a)) is used

in [28].

M+v

©H /D ® !@H^£ EL(U-V)

(a) (b)

Figure 3.4: (a) An arc U -> V in the algorithm DFG. (b) The mapping of the folded arc
in the architecture DFG.

A folding set is an ordered set of operations which are executed by the same processor.

Each folding set contains N entries, some of which may be null operations. The operation

in the j'-th position within the folding set (where j goes from 0 to TV-1) is executed by the

processor during time partition j. For example, consider the folding set Si = {Ai, 0, A2)

for N = 3. Operation A\, belongs to folding set Si with folding order 0 (also denoted as

(Si|0)), and operation A2 belongs to folding set Si with folding order 2 (also denoted

as (Si|2)). Due to the null operation in the 1-st position within Si, the operator that

executes operations Ay and A2 will not be utilized at time instances 3/ + 1. For a folded

system to be realizable, DF{U -> V) > 1 must hold for all arcs. Once valid folding sets

have been assigned, pipelining and retiming can be used to satisfy this property (see

[28]).

In the folded realization, the data on the system input is assumed to be valid for N

clock cycles before changing. For example, if N = 2 and the folded realization is assumed

to operate with period T, then the input sample x[0] must be valid from 0 to 2T, x[l]

must be valid from 2T to 4T, etc.

We demonstrate the use of systematic folding techniques by folding the biquad filter

63

in Figure 3.5(a). Assume addition and multiplication require 1 and 2 units of time,

respectively (i.e., TA = 1 and TM = 2), and one-stage pipelined adders and two-stage

pipelined multipliers are available (i.e., PA = 1 and PM = 2). A retimed version of this

filter with valid folding sets assigned using folding factor N = 4 is shown in Figure 3.5(b).

Folding factor N = 4 means that the iteration period of the folded hardware is 4 time

units, i.e., each node of the biquad filter is executed exactly once every 4 time units in

the folded DFG. The folded circuit is shown in Figure 3.6. To see how the folded DFG in

Figure 3.6 is obtained from the algorithm DFG in Figure 3.5(b), consider arc A\ ->■ M4.

Using (3.1), we find

DF{A\ -¥ M4) = 4(2) -0 + 1-3 = 6.

This means there is an arc in the folded DFG from the adder to the multiplier with 6

delays. Since this arc ends at node M4, which has folding order 1 in the algorithm DFG,

the folded arc is switched at the input of the multiplier in the folded DFG at 41 + 1.

This folded arc is shaded in Figure 3.6. Using Figure 3.1(a) as another example and

assigning folding orders 2 and 8 to the multiply and add operations, respectively, and

using N = 10 and PAt = 2, we get 10(0) -1 + 8-2 = 5 delays in the folded arc as shown

in Figure 3.1(b).

IN
(S,I3)

<s>-^ -<$>
(S|ll)

A,

n

OUT

A ' .(A).

a

(k)—(MJ>-
1 (s,io)

c

(S.I2)

<5^'

A,)(S,iO)

(a) (S,I3) (b) (Sjll)

Figure 3.5: (a) The biquad filter, (b) The retimed filter with valid folding sets assigned.

The folded DFG in Figure 3.6 represents the data path specifications obtained from

64

IN

luj, l'WK I-1,

(0,21 ; JU^ ;

I *.

:-r (21

OUT

(0) [2| (3| l|

3S

a-I2t
frJlt
c-l2fc"
«/-life

■e—c (p,q) denotes 4/ +p and 4/ +q

Figure 3.6: The folded biquad filter using the specifications given in Figure 3.5(b). The
shaded arc represents arc A\ -> M4 in the folded DFG.

the scheduled algorithm DFG by using (3.1); however, this DFG does not represent the

most efficient implementation of the scheduled DFG in terms of memory usage. Through-

out the remaining sections of this chapter, expressions are derived for determining the

most efficient implementation of a statically scheduled DFG in terms of the amount of

memory required for the implementation. We now introduce some definitions that will

be used in these derivations.

Let xi, I > 0 be the result of the l-th iteration of operation U. Recall that each node

in the DFG is executed exactly once per iteration. Throughout this chapter, we consider

only nonnegative iterations of each operation, which results in no loss of generality.

Variable x; is produced exactly once by Hy, but may be consumed multiple times by

one or more processors due to the possibility of fanout. We define a unique production

time and a unique consumption time for each variable.

Definition 3.1 The production time of variable xi, denoted as pXl, is the time unit in

which xi is output from H\j ', which is Nl + u + P'y. The consumption time of xi,

65

denoted as cX[) is the latest time unit during which xi is input to any processor.

Recall that u is the folding order of operation U, which is the time partition, or time unit

modulo N, in which the operation U is scheduled to be executed by processor HJJ. Since

we consider only nonnegative iterations of nodes, pI(> u + Py always holds. Also, the

consumption time must be greater than the production time, i.e., pI(< cI(must always

hold because Dp(U ->■ V) > 1 is assumed. In the remainder of the chapter, pXl >u + P[j

and pXl < cI(are implicitly assumed. We use pX[and cXi to define the time interval for

which the variable xi is live.

Definition 3.2 The variable i/ is live for all time units in the interval (pIpcI(].

3.3 Memory Minimization without Retiming

In this section, we derive expressions for the minimum number of registers required to

implement a DFG assuming that the DFG has already been scheduled and no more

circuit transformations (e.g., retiming) are to be performed on the DFG. The minimum

number of registers required to store the variables that are output from a single node

is first computed. The operation-constrained, processor-constrained, and unconstrained

memory models arc then described, and expressions are derived for the minimum number

of registers required to implement arbitrary DFGs under these models.

3.3.1 Minimum Number of Registers for Outputs from a Single Node

Before considering the case where the output variables of a node are broadcast to several

arcs (e.g., node U in Figure 3.2), we consider the simple case of a single arc U -> V as

shown in Figure 3.4(a). The minimum number of registers required to implement the

Dp{U ->• V) delays in Figure 3.4(b) can be calculated using life-time analysis. If we let

66

X[, I > 0, be the result of the l-th iteration of node U, then the production time of xi

is pX{ = u + P'u + Nl and its consumption time is cI(= pX[+ Df(U -» V). Consider

time unit K. The first variable that is produced by node U is the result of the 0-th

iteration of U, and the production time of this variable is defined to be pXo. A new

variable is produced by node U every N time units, so the number of variables which

have production times prior to time unit K (i.e., which satisfy pXl < K) is

'K-Pxo' rP,u{K) =
N

(3-2)

where \x] is the ceiling of x, which denotes the smallest integer greater than or equal

to x. Using a similar argument, the number of these variables with consumption times

prior to time unit K (i.e., which satisfy cI(< K) is

'K-cr
rc,u(K)

^Xo

N
(3-3)

Note that these expressions for rPiv(K) and rCtu(K) are valid for all K such that

rPyu{K) > 0 and rc,u{K) > 0. According to Definition 3.2, a variable is live at time

unit K if it is produced prior to K and not consumed prior to K. Therefore, the num-

ber of .live variables at time unit K is the difference between the number of variables

produced prior to time unit K and the number of variables consumed prior to time unit

K, i.e., rlive<ir(K) - rPtU{K) - rCyU(K). Using (3.2) and (3.3), the expression for the

number of live variables at time unit K becomes

nive,u{K)
~K -Pxo~

N
-

~K -cXo~
N

(3.4)

The minimum number of registers required to implement the DF{U -> V) delays in

Figure 3.4(b) is the maximum value of ruvetU(K) over all K. The value of ruvetU(K)

is periodic in K with period N because the folded architecture operates periodically

with period N. Therefore, we only need to evaluate (3.4) for N consecutive time units.

67

Evaluating (3.4) at time units K = qN + n for some integer q and n € [0, N) results in

the number of live samples at time partition n, given by

riive,u(n) =
~qN + n

N
'n-Pxo'

N

~Px 0

~n

\qN + n-cXo

N
- {Pxo + DF(U -»• vm

N

where cXo = pXo + Dp(U ->■ V) has been used. The minimum number of registers

required to implement the Dp{U -> V) delays in Figure 3.4(b) is the maximum value of

riive,u{n) over the interval n G [0, AT), i.e.,

(max) f / \ l r/W(/ = S^Jr«»e,t/(n)}.
' n€[0,yV)

The following lemma can be used to find the maximum of rnvey{n) for n G [0, N).

Lemma 3.1 Given integers A, B, n, and N > 0,

max
ne[0

ix <
,A0 I

B + n
N

B - A + n
N }-

A
N

Proof: Since

B + n
N

B- A + n
N

(3.5)

is periodic in n with period N, we only need to show that the maximum of this expression

is ^ for any N consecutive integers. Therefore, it is sufficient to show that

max
ne[A~B,A-B+N) i B + n

N
B- A + n

N }-
A
N

The expression in (3.5) equals | •$■! for n = A - B. It remains to show that

m-\ B - A + n
N

< A
N

holds for n = A-B + l,A-B + 2,. ..,A- B + N -1. This can be written as

-A + k'
N

-
■A"

N
<

■A'

N (3.6)

68

D D -©
-®

Time

0
l
2
3
4
5
6
7
8
9
10

live samples

s 1

• j

 4 1—

* —

(a) (b)

Figure 3.7: (a) A fanout node U. (b) The lifetime chart of samples in the folded archi-
tecture.

Table 3.1: Summary of the three memory models described in Section 3.3.2.

memory model

operation-constrained
(Section 3.3.2)

processor-constrained
(Section 3.3.2)
unconstrained
(Section 3.3.2)

outputs of the nodes
executed by the same processor

can share registers

No

Yes

Yes

outputs of
different processors
can share registers

No

No

Yes

in G. This results in no loss of generality since arcs that communicate with the outside

world can be included by introducing dummy nodes. Let U be the set of nodes in G with

at least one output arc that terminates at a node in G. In this section, the expressions

derived in Section 3.3.1 are used to compute the minimum number of registers required

to implement G for the operation-constrained, processor-constrained, and unconstrained

memory models. Table 3.1 gives an overview of the three memory models discussed in

this section.

71

The Operation-Constrained Memory Model

In the operation-constrained memory model, each node U E U in G is allocated a unique

set of registers in the synthesized hardware. The only variables which are allowed to

occupy the registers allocated to U are those variables which result from the execution

of node U. As a result, register minimization under the operation-constrained memory

model consists of independently computing the minimum number of registers required

to implement each node U eU and adding these results for all nodes in U. Using (3.10)

to compute the number of registers required to implement each node, we get

n(max)
UF,U

N ueit

where Dpy is computed as in (3.8).

Example 3.2 Consider the scheduled biquad filter in Figure 3.5(b). Recall the assump-

tions that addition and multiplication require 1 and 2 units of time, respectively (i.e.,

TA = 1 and TM = 2), and one-stage pipelined adders and two-stage pipelined multipliers

are available (i.e., P,\ = 1 and PM — 2). Table 3.2 shows the number of registers required

to individually implement each node. For example, the five arcs which are output from

node Ai have 1, 2, 3, 4, and 6 folded arc delays. Since max{l,2,3,4,6} = 6, node A\

requires [6/4] = 2 registers. By adding the values in Table 3.2, we find Ro = 8, i.e.,

8 registers are required to implement the biquad filter shown in Figure 3.5(b) using the

operation-constrained memory model. □

The operation-constrained memory model is suboptimal with respect to minimization

of registers since the registers are often underutilized. For example, consider nodes

Az and AA in Figure 3.5(b). These two nodes belong to folding set S\ so they are

executed by the same processor, which is a one-stage pipelined adder. The outputs of

72

Table 3.2: The number of registers required to implement the nodes of the biquad filter
individually.

NodeC/
n(max)
UF,U

N

Ai 2
A3

A4

Mi

M2

M3

M4

this adder due to A3 and A4 must be delayed by 1 time unit since using (3.1) we find that

DF{A$ -¥ Ai) = 1 and Dp(A4 -¥ A2) = 1 in Figure 3.5(b). Since the variables resulting

from operation A3 are live during time units 4/ + 3 and the variables resulting from A4

are live during time units Al + 1, these outputs could share the same register; however,

under the operation-constrained memory model, each of the nodes A3 and A4 requires

a separate register. This particular underutilization problem could be eliminated by

allowing all variables which are output from the same processor to share registers, which

leads to the processor-constrained memory model.

The Processor-Constrained Memory Model

In the processor-constrained memory model, each processor in the synthesized hardware

is allocated a unique set of registers. The only variables which are allowed to occupy the

registers allocated to a processor are those variables which are output from that particular

processor. As a result, register minimization under the processor-constrained memory

model consists of individually computing the minimum number of registers required

to allocate the outputs of each processor and adding these results for all processors.

73

Recall that the nodes (i.e., operations) which are executed by the same processor belong

to the same folding set. The processor-constrained memory model is less restrictive

than the operation-constrained memory model since the processor-constrained model

allows outputs from the nodes in a folding set to share registers in the synthesized

hardware, while the operation-constrained memory model allows no memory sharing

among variables produced by different nodes. To determine the number of registers

required to implement all nodes in a folding set, we must compute the number of live

variables due to the nodes in the folding set for each time partition n G [0, N).

For each node U GW, we must first compute Dpy using (3.8). The number of live

variables due to node U in time partition n can be found by substituting pXQ = u + P'v

into (3.9) to get

\n-(u + Pljy
riive,u{n) = jj

(mai) \ n-iu + P'y+D^P)
N

(3.11)

Let Si, 52,..., Ss be the folding sets in G. Note that s is the number of folding sets in

G, which is equivalent to the number of processors in the folded realization of G. The

number of live variables in time partition n G [0, N) due to all U € Sk is

ruve,sk(n) = E rUve,u(n),
uesk

and the number of registers required to implement all nodes U € Sk is

(max) r / \i riiveJk= max {r'it,e,sfc(n)}-

The minimum number of registers required to implement G using the processor-con-

strained memory model is

RP = E rSfc = E 5Ä { E rHve,u{n)
*=i *=i \nG(0'N) [ueSk

74

Table 3.3: The number of live variables at the output of each operator of the folded
biquad filter for all possible time partitions.

time Si(+) 52(x)
0 2 2
1 3 1
2 1 2
3 2 1

Example 3.3 For the biquad filter in Figure 3.5(b), the number of registers required to

delay the outputs of the adder is r\^x
s = 3 and the number of registers required to delay

the outputs of the multiplier is r}™^ = 2. As a result, Rp = 5, i.e., 5 registers are

required to implement the folded biquad filter using the processor-constrained memory

model.

The processor-constrained memory model may not result in the minimum number of

registers because variables which are output from different processors are not allowed to

share registers. Table 3.3 shows the number of live variables for the scheduled biquad

filter in Figure 3.5(b) for the folding sets Si (adder) and 52 (multiplier) during each

time partition. The total number of live variables during any time partition can be

found by simply adding the number of live variables due to Si and 52 for that time

partition. Notice that the maximum number of live variables in any time partition is 4

even though we computed in Example 3.3 that the folded implementation requires 5

registers using the processor-constrained memory model. This demonstrates that the

processor-constrained memory model may not achieve global optimality with respect to

register minimization; however, this may still result in an efficient architecture due to

local interconnection.

75

The Unconstrained Memory Model

In the unconstrained memory model, each variable can be stored in any register in

the synthesized hardware, regardless of the node in the DFG or the processor in the

synthesized hardware from which the variable originates. The minimum number of

registers required under the unconstrained memory model is computed by taking the

maximum of the total number of live variables in G over one period of operation, which

can be written as

Ru = max \ V rHvey(n) \ , (3.12)

where (3.8) and (3.11) are used to compute ruve,u{n). The quantity Ru represents the

theoretical lower bound on the number of registers required to implement G.

Example 3.4 Table 3-4 lists the value of ruvetu(n) for all nodes U E U and all time

partitions n E [0,N) for the biquad filter in Figure 3.5(b). The number of live vari-

ables for each time partition can be found by taking the sum of each column, i.e., these

values for time partitions 0, 1, 2, and 3 are 4, 4, 3, and 3, respectively. The mini-

mum number of registers required using the unconstrained memory model is Ru = 4

since max {4,4,3,3} = 4. Recall that, for this example, the operation-constrained mem-

ory model required 8 registers and the processor-constrained memory model required 5

registers. D

To determine the computational complexity of computing Ru in (3.12), let m be the

number of nodes in G. Clearly, the number of nodes U EU cannot be greater than m. If

we assume the maximum number of inputs to any node is a constant that is independent

of m, then the number of arcs in G grows linearly with m, and Dy^x' in (3.8) can be

computed for U E U in 0{m) time. The maximum number of nodes in G that can be

76

Table 3.4: The number of live variables due to each node in the biquad filter for all
possible time partitions.

n = 0 n= 1 n = 2 n = 3

riive,Ai (n) 2 2 1 1

riive,A3(
n) 0 0 0 1

riiveM (") 0 1 0 0

flive,Mi (n) 0 0 1 0

riive,M2 (n) 1 0 0 0

riive,M3 (n) 0 1 1 0

Tlive,MA (n) 1 0 0 1

T,ueuriive,u(n) 4 4 3 3

executed by a single processor is m (the uniprocessor case), so N < m holds. Then

rftt>e,c/(") m (3-11) can be computed for U G U and n e [0, AT) in 0(m2) time. The

summation in (3.12) represents 0(m2) additions, and finding the maximum in (3.12)

requires 0(m) comparisons. Therefore, Ru can be computed for an arbitrary DFG with

m nodes in 0(m2) time.

3.3.3 Comparison of Memory Models

Table 3.5 compares the number of registers required for several benchmark filters under

the various memory models. The benchmarks used are the fourth-order all-pole lat-

tice filter mentioned in [59] (Fl), the fifth-order wave digital elliptic filter introduced

in [47] (F2), the fourth-order Jaumann wave digital filter mentioned in [60] (F3), the

four-stage pipelined lattice filter [61] (F4), and the biquad filter shown in Figure 3.5(a)

(F5). These filters were scheduled using the MARS system [26]. Notice from Table 3.5

that Ru < Rp < Ro for all of these filters, which appeals to our intuition since the

operation-constrained memory model has the most restrictions on memory sharing while

the unconstrained memory model has no restrictions on memory sharing.

It is important to note that the three memory models considered in Section 3.3.2 are

77

Table 3.5: Register count using various memory models. The benchmark filters used are
fourth-order lattice filter (Fl), fifth-order wave digital elliptic filter (F2), fourth-order
Jaumann filter (F3), four-stage pipelined lattice filter (F4), and biquad filter shown in
Figure 3.5(a) (F5). N is the iteration period.

Filter N Ro Rp Ru
Fl 10 15 7 6
F2 16 34 12 10
F3 10 16 9 7
F4 2 29 20 18
F5 4 8 5 4

representative of the various models which can be chosen. New memory models can be

defined as needed, and expressions can be derived for the minimum number of registers

for these models using the same approach as used in Section 3.3.2.

While Table 3.5 gives the number of required registers using the three memory models

described in Section 3.3.2, there are side-effects which are not shown in the table. For

example, decreasing the number of registers by using the unconstrained model typically

increases the number of multiplexers required to allocate data to these registers, and

the overall effect of using fewer registers may actually be an increase in area due to the

area of the multiplexers. As a result, the number of registers cannot be considered to

be the sole cost of the circuit, and several memory models may need to be evaluated to

determine the best one for a given application.

3.4 Memory Minimization Using Retiming

The derivations in Section 3.3 are based on the assumption that the DFG has been

scheduled and no more circuit transformations are to be performed on the DFG. In

this section, we consider optimal retiming of the DFG after scheduling so the resulting

implementation uses the minimum number of registers under the unconstrained memory

78

model.

Retiming is often used to reduce the critical path or minimize the number of delays

in a circuit [27]. Retiming has also been used for scheduling [11], [12], [26]. This section

deals with using retiming to minimize the number of registers in the hardware realization

of a statically scheduled DFG. Of course, the retiming must always maintain the validity

of the schedule by keeping Dp(U -» V) > 1 for all arcs U ->• V so the resulting DFG is

realizable.

The problem of minimizing the number of delays in a scheduled DFG is not analogous

to minimizing the number of registers required by the hardware realization of the DFG.

For example, the DFG in Figure 3.8(a) contains 3 delays and its hardware realization

requires 5 registers using the unconstrained memory model when we assume an iteration

period of N = 2 and that all hardware processors are pipelined by P = 1 stage. The

folding orders are indicated next to the nodes. A retimed version of the DFG is shown in

Figure 3.8(b), where the retiming values r(l) = 0, r(2) = 0, and r(3) = 1 are used. This

retimed DFG contains 4 delays and its hardware realization requires 4 registers using

the unconstrained memory model. From this example, we see that use of retiming to

decrease the number of delays in the DFG can actually increase the number of registers

required to implement the DFG in hardware.

Recall that arc U -> V in Figure 3.4 is folded using (3.1). Using retiming, the number

of delays in arc U -> V can be changed from i to

ir = i + r(V)-r(U), (3.13)

where ir is the number of delays in arc U -> V in the retimed algorithm DFG, and r(X)

denotes the retiming value of node X [27]. Let D'F(U -> V) denote the number of folded

arc delays obtained by folding arc U ->■ V in the retimed algorithm DFG. To ensure that

79

0^^

GHZ
D

jl oJL uL oJL^

(a) (b)

Figure 3.8: (a) A scheduled DFG which has 3 delays and whose hardware requires 5
registers, (b) A retimed version of the DFG which has 4 delays and whose hardware
requires 4 registers. For both parts, an iteration period of 2 is assumed and all nodes
are mapped to processors with one pipelining stage.

the corresponding arc in the folded hardware DFG has a nonnegative number of delays,

we must force the constraint D'F(U -> V) > 1, which is equivalent to

Nir-P(j + v-u-l>0. (3.14)

This constraint ensures that the schedule which was determined prior to retiming is also

valid after retiming. Since the retiming values for the nodes are restricted to be integers,

(3.13) and (3.14) can be combined as in [28] to obtain

DF(U-*V)-1
r{U)-r(V) <

N
(3.15)

where [x\ is the floor of x, which denotes the largest integer less than or equal to x. Once

the set of constraints for the DFG is found using (3.15) (there is one such constraint

for each arc in the algorithm DFG), a solution must be found using an appropriate

technique. We consider an ILP formulation that satisfies the constraints while minimizing

the number of registers required to implement the folded hardware DFG.

In addition to the constraints specified by (3.15), the ILP technique must also use

constraints to find the maximum values in (3.8) and (3.12). We refer to this formulation

as Minimum Physical Storage Location (MPSL) retiming, which is summarized below.

The set of equations in Step (II) of MPSL retiming are similar to those used in [21].

80

MPSL retiming: Minimize Ru subject to

(I) VJ7 G U and W G Vu

r(U)-r{V) <
DF(U -> V) - 1

N

(II) VC/ G U and VV G Vy

D'{max) > ^^ ^ y) + Ar(r(F) _ r(c/))

(III) VnG[0,iV)

' "n - (u + P/,)

t/€W
N

'(max)

N

Consider the biquad filter shown in Figure 3.5(a). Assume TA = 1, TM = 2, PA = 1,

and PM — 2. The iteration bound, i.e., the lower bound on the achievable iteration

period, is 4 units [60], [62], and we consider scheduling the DFG so that the iteration

period is equal to the iteration bound. Using the schedule found by the MARS system,

the MPSL formulation retimes the DFG such that the minimum number of registers

required to implement the biquad filter using the unconstrained memory model is 4.

One such retiming of the schedule is shown in Figure 3.5(b) (recall that Ry = 4 was

computed for Figure 3.5(b) in Example 3.4). Figure 3.9 shows the complete synthesized

hardware for the DFG in Figure 3.5(b). Notice that register R\ is not utilized in time

partition 2 and R\ is not utilized in time partition 3. This underutilization can also be

seen in Table 3.4 where the sum of the n = 2 and n = 3 columns are each equal to 3,

so that only 3 of the four registers are utilized during time partitions 2 and 3. In spite

of this underutilization, the DFG in Figure 3.5(b) uses the minimum possible number of

registers for the given schedule.

The MPSL retiming problem was solved using the ILP solver GAMS [63]. We note

81

OUT

{p,q} denotes 4/ +p and 4/ +q

X|(Q)

Figure 3.9: The complete synthesized hardware for the scheduled biquad filter in Fig-
ure 3.5(b). D and Ri represent word-size registers.

that in some cases, GAMS found an integer solution which it could not prove was optimal.

In these cases, we proved that the solution was optimal by showing that there is a

time partition for which no better solution exists. When applying MPSL retiming to

the schedules obtained by MARS, we found that MPSL retiming did not reduce the

number of required registers compared to the retiming performed by MARS, i.e., for the

five benchmark filters we considered, the MARS system optimally retimed the filters in

terms of the number of registers required under the unconstrained memory model for

the schedules generated. Although this result suggests that the retiming performed by

MARS is good, it says nothing about the quality of the schedules obtained by MARS

with respect to memory requirements.

To determine how the scheduling technique used by the MARS design system performs

in terms of minimizing the required number of registers, the MARS schedules were

compared to globally optimal results. To determine optimal results in terms of the

number of registers, an ILP model is used which schedules a DFG by first minimizing

82

Table 3.6: Register count for the benchmark filters described in Table 3.5. N is the
iteration pe iod. Both scheduling techniques require the minimum number of processors.

Filter N
MARS schedule

using MARS retiming
MARS schedule

using MPSL retiming
ILP

schedule
Fl
F2
F3
F4
F5

10
16
10
2
4

6
10
7

18
4

6
10
7
18
4

5
10
6
18
4

the number of processors and then minimizing the number of registers, as in [37]. The

results are shown in Table 3.6, where parameters TA = 1, PA = 1, TM = 2, and

PM = 2 are assumed. First, the table shows that MPSL retiming does not change

the number of registers required by the MARS schedules. The table also shows that

the schedules obtained from the MARS system are optimal or near-optimal in terms of

register requirements for the five benchmark filters.

Example 3.5 Figure 3.10(a) shows a retimed version of the fifth-order wave digital

elliptic filter given in [47]. The filter has been retimed using the MPSL retiming according

to the schedule in Table 3.7 generated using the MARS system. Figure 3.10(b) shows

the synthesized architecture which uses 10 registers. The 10 registers are denoted as Ri,

and the internal pipeline delay of the multiplier, which cannot be shared by other data

paths, is denoted as D. Note that parameters TA = 1, PA = 1, TM = 2, and PM = 2

are assumed, and the iteration period of the hardware is 16 units, which is the iteration

bound for the parameters assumed.

83

Table 3.7: The schedule from the MARS system for the fifth-order wave digital elliptic
filter.

node 1 2 3 4 5 6 7
folding

(set|order) (5i|14) (Si\0) (5i|H) (Si |15) (5-4|12) (Si|10) (S2|l)

node 8 9 10 11 12 13 14
folding

(set|order) (Si\7) (ftlll) (54|8) (S2|12) (52|15) (S2|0) (54113)

node 15 16 17 18 19 20 21
folding

(set | order) (5i|6) (Si\2) (5i|3) (5-2|7) (52|8) (S3|7) (S.I4)

node 22 23 24 25 26 27 28
folding

(set|order) (54|5) (53|8) (ft|2) (S3|H) (53|12) (54|9) (S3|13)

node 29 30 31 32 33 34
folding

(set|order) (53|0) (53|1) (54|14) (5! |12) (Sill) (S4|15)

3.5 Conclusions

Efficient use of memory in application-specific architectures for DSP is very important

in order to meet design specifications. Inefficient use of memory can result in inefficient

designs due to effects such as increased area and increased power consumption.

We have derived closed-form expressions for the minimum number of registers re-

quired by a statically scheduled DSP program for the operation-constrained, processor-

constrained, and unconstrained memory models. We first derived expressions for the

minimum number of registers under the operation-constrained and processor-constrained

models, and we demonstrated via the biquad filter example why these memory models

are not optimal in terms of the number of registers required. We then derived the expres-

sion for the minimum number of registers under the unconstrained memory model. This

expression, which gives the theoretical lower bound on the number of registers required

to implement a statically scheduled DSP program, can be computed in 0(m2) time for

84

a DFG with m nodes. The techniques we used in our derivations can also be used to de-

termine expressions for lower bounds on memory requirements for other memory models

not discussed in the chapter. The results in this chapter are most applicable to dedicated

application-specific hardware; however, we believe that these results can also be applied

to other technologies, such as FPGA-based designs.

We also considered retiming to minimize memory requirements of a statically sched-

uled DFG. The MPSL retiming formulation uses integer linear programming techniques

to determine the optimal retiming of the DFG in terms of memory required under the

unconstrained memory model while maintaining the validity of the schedule. We used

MPSL retiming to verify that retiming performed by the MARS system is optimal for

the benchmark filters we considered. We then compared memory requirements of sched-

ules obtained by MARS to schedules obtained using integer linear programming which

are optimal in terms of required memory under the unconstrained memory model. Our

results show that the schedules obtained by MARS are optimal or close to optimal in

terms of memory requirements.

The evaluation of the schedules obtained by MARS demonstrates how the techniques

presented in this chapter can be used for evaluation of high-level synthesis systems. These

techniques can be used for design and evaluation throughout the high-level synthesis

process.

85

;f-^-
OUT

(a)

INi »OUT
abctlefgh

(x,y) denotes 16/+x and 16/+y mil inhuil Mil ml nihuijiisil

v/öiiu vyöit.i2.ui

(b)

Figure 3.10: (a) Fifth-order wave digital elliptic filter. The DFG has been retimed
using MPSL retiming to minimize the number of registers required given the schedule
generated by the MARS system (see Table 3.7). (b) Synthesized hardware using the
minimum possible iteration period of 16 and the theoretical lower limit of 10 registers.

86

Chapter 4

Multirate Folding

4.1 Introduction

The widespread use of digital representation of signals for transmission and storage has

created challenges in the area of digital signal processing (DSP). In response to these

challenges, new DSP algorithms have emerged for tasks such as compression and filtering

of digital signals. Many of these algorithms are multirate in nature, meaning that the

sample rate is not constant throughout the algorithm description [5]. While the theory of

multirate DSP has matured over the past decade, there has been relatively little research

on the topic of designing efficient real-time architectures for multirate systems. This has

resulted in a lack of CAD tools that can translate multirate algorithms into efficient

VLSI architectures.

Considerable work has been done in the area of scheduling multirate DSP algorithms

and constructing efficient DSP code for these algorithms [55, 64, 57, 65, 66]. The topic

of this chapter is multirate folding [36], which is a technique for systematically synthesiz-

ing control circuits for single-rate architectures which implement multirate algorithms.

Throughout this chapter, the term single-rate architecture is used to describe a syn-

chronous architecture where the entire architecture operates with the same clock period.

87

Examples of data-flow graphs (DFGs) describing multirate DSP algorithms are shown in

Figure 4.1. The DFGs in Figure 4.1 are multirate due to decimation by 2 (| 2 block which

discards every other sample) and expansion by 2 (f 2 block which inserts a zero between

each adjacent pair of samples), which respectively halve and double the sample rate of a

signal. A direct mapping of a multirate DSP algorithm to hardware would require data

to move at different rates on the chip. This would require routing and synchronization of

multiple clock signals on the chip. To avoid these problems, we concentrate on mapping

the multirate DSP programs to single-rate VLSI architectures.

The advantages of multirate folding fall into two broad categories. The first advantage

is that the multirate folding equations can be used to systematically determine the

control circuitry for the architecture from a scheduled DFG. The second advantage,

which is slightly more subtle, is that this formal approach can be used to address other

related problems in high-level synthesis in a formal manner. Two such problems, memory

minimization and retiming [27], are considered in this chapter. Using the multirate

folding equations, we derive expressions for the minimum number of registers required

to implement the architectures, and we derive constraints for retiming the circuit such

that a given schedule is valid.

We first introduced multirate folding in [36] as a technique for synthesizing archi-

tectures for tree-structured filter banks. Full and pruned tree-structured filter banks

are useful for many DSP applications, such as signal coding and analysis. Recent in-

terest in the discrete wavelet transform (DWT) has significantly increased the number

of applications for tree-structured filter banks since the DWT can be computed using

a pruned tree-structured filter bank [42, 41, 43, 44]. Computation of wavelet packet

bases is another application of pruned tree-structured filter banks [45]. Full binary tree-

structured filter banks for signal analysis and synthesis are shown in parts (a) and (b)

88

of Figure 4.1. Pruned binary tree-structured filter banks which represent analysis and

synthesis structures for the discrete wavelet transform (DWT) are shown in parts (c) and

(d) of Figure 4.1. Multirate folding can be used to synthesize architectures for each of the

four filter banks in Figure 4.1. In Section 4.6, we give a detailed example which shows

how the techniques presented in this chapter can be used to design an architecture for

the three-level discrete wavelet transform analysis filter bank as shown in Figure 4.1(c).

r^Ü)Kt2
rH„(z)-l2

rHfl(z) 12 ^t2H^Ü>
uH,(z) 12- -t2- F,(zH

-t2-F0(z)

^,(^-12
rHo(z)-l2- -12-F„(z)n

uH,(z)-l2- -t2-F,(z)
t2-F,(zH

t2-F0(z)

H,(z)-I2-

rHo(z)-l2
rH0(z)-l2- -t2-F0(z)

uH,(z)-l2- -t2-F,(z)
-t2-F„(z)n

L-H,(z)-t2-
rH„(z)-l2~ -t2-F„(z)

uH,(z)-l2- -t2-F,(z)-1
-t2 - F,(z)

-t2-F,(z)

(a) (b)

r H„(Z) -12
rfH^zM^I-

I-H„(Z)-I2 -t2-F0(z)

H,(z) \2

u H,(z) -12

u H,(z) -12- t2-F,(zH
t2 Fo(z)

t2 F,(z)^
-t2-F,(z)-|

(2-F,(z)

(0 (d)

Figure 4.1: Examples of full and pruned binary tree-structured filter banks, (a) Full-tree
analysis filter bank, (b) Full-tree synthesis filter bank, (c) Pruned-tree analysis filter
bank which can be used to compute the DWT. (d) Pruned-tree synthesis filter bank
which can be used to compute the inverse DWT.

The main properties of multirate folding are summarized below:

• Multirate folding is a novel technique for synthesizing control circuits for single-rate

architectures which implement multirate DSP algorithms.

• The multirate folding equations allow us to address other problems in high-level

89

synthesis, such as memory minimization and retiming.

• Multirate folding operates directly on the multirate DFG, avoiding the step of first

constructing an equivalent single-rate algorithm description.

• Multirate folding accounts for pipelining, so architectures can be designed for high

speed and low power [67] applications.

• Multirate folding is applicable to a wide variety of DSP algorithms. We demon-

strate its utility by designing a discrete wavelet transform architecture.

The chapter is organized as follows. Section 4.2 reviews some fundamentals of mul-

tirate digital signal processing. In Section 4.3, we derive the folding equations which

are used to systematically synthesize the control circuits for the pipelined architectures.

Retiming for multirate folding is addressed in Section 4.4. Memory requirements for

the folded architectures are addressed in Section 4.5, and the discrete wavelet transform

design example is given in Section 4.6. Our conclusions are stated in Section 4.7.

4.2 Some Multirate DSP Fundamentals

This section provides a review of some multirate DSP fundamentals which are used

throughout the chapter.

Multirate DSP algorithm descriptions contain decimators and/or expanders. Fig-

ure 4.2 shows a decimator and an expander, which obey the input-output relationships

VD{n) = x(Mn) and

(\ —) x(ltf) if " is a multiple of M
VE\n) - | 0 otherwise

Note that we use the term expander rather than interpolator to describe the block in

90

Figure 4.2(b) since interpolation generally implies expansion followed by filtering. The

decimator and expander both have the effect of changing the sample rate.

x(n)- IM— yD(n) x(n) -fM yB(n)

(a) (b)

Figure 4.2: (a) Decimation by M. (b) Expansion by M.

The noble identities are useful for theory and implementation of multirate DSP [5].

Special cases of these identities are shown in Figure 4.3. These relationships are used in

Section 4.4 to derive conditions for retiming a multirate DFG for folding.

„-Mi
— IM IM

tM

(a)

(b)

tM
.-Mi

Figure 4.3: Redistribution of delays in a multirate system using the noble identities.

4.3 Derivation of Folding Equations

Folding is a technique for systematically determining control circuits in architectures

where multiple algorithm operations (such as addition operations) are time-multiplexed

to a single hardware module (such as a pipelined ripple-carry adder) [28]. The folding

transformation is similar to loop folding [68] which has been used in high-level synthesis.

Figure 4.4 shows an example of how folding can be used to time-multiplex two algorithm

operations to a single hardware operator. Folding equations have been derived in the past

for folding single-rate algorithms to single-rate architectures, and for folding single-rate

algorithms to multirate architectures [28]. In this section, we review folding of single-rate

91

algorithms to single-rate architectures, and then derive equations for folding multirate

algorithms to single-rate architectures.

b(n) ^ , <£±L c(n)

(a) (b)

Figure 4.4: (a) A simple single-rate DSP algorithm with two addition operations, (b)
A folded architecture where the two addition operations are folded to a single hardware
adder with one stage of pipelining.

4.3.1 Single-Rate Folding

Consider an arc (also referred to as an edge) connecting nodes U and V with i delays,

as in Figure 4.5(a). Let the l-th. iteration of nodes U and V be scheduled to execute

at time units Nul + u and Nyl + v, respectively, where u and v are the folding orders

of nodes U and V which satisfy u e [0,Nu) and v E [0, Ny). The hardware operators

(also referred to as functional units) which execute nodes U and V are denoted as Hu

and Hy, respectively. Note that Nu and Ny number of operations are folded to Hu and

Hy, respectively. If Hu is pipelined by Py stages, then the result of the /-th iteration of

node U is available at Nul + u + Pu- Since arc U —► V has i delays, the result of node

U is used by the (/ + i)-th iteration of V, which is executed at Ny(l + i)+v. Therefore,

the result must be stored for

Df(U -> V) = Nv(l + i)+v- (Nul + Pu+u) = (Ny - Nv)l + Nyi -Pu + v-u

time units. Since we assume that DSP programs iterate from I = 0 to / = oo, practical

concerns require Nu = Ny to avoid the cases where Df(U -> V) approaches +oo or

92

-oo as / gets large. With N = Ny = Ny, the folding equation becomes

DS
F{U ^V) = Ni-Pu+v-u, (4.1)

which is independent of the iteration number, /. Arc U ->• V maps to a path from Hy

to Hy in the architecture with Dp(U -> V) delays, and data on this path are input to

Hy at Nl + v, as illustrated in Figure 4.5(b).

 M+v

u /D V R,D ru pyu-v)
w M+v

(a) (b)

Figure 4.5: (a) An arc U -> V with i delays, (b) The corresponding folded arc.

4.3.2 Multirate Folding

Multirate folding provides a systematic technique for mapping multirate algorithms to

single-rate hardware. Folding equations are first derived for arcs which contain decima-

tors and then for arcs which contain expanders.

The Folding Equation for Arcs Containing Decimators

Consider the arc U -> V in Figure 4.6(a), where the output of node U passes through i\

delays, decimation by M, and %2 delays before reaching node V. Let the /-th iteration

of node U execute at time unit Nyl + u and the l-th iteration of V execute at Nyl + v,

where the folding orders satisfy u e [0, Nu) and v e [0, Ny).

The signals labeled in Figure 4.6(a) are related by

w\(l) = x(l — ii)

w2(l) = wi(Ml) =x{Ml-n)

y(l) = w2{l-i2) = x(M(l-i2)-ii)

93

x(Z)
^D

W^/V ,W2(/)
JM ^D

y(0
v

(a)

^^[^jl^^^^V^H^
Nyl+v

(b)

Figure 4.6: (a) An arc U —>■ V which contains a decimator. (b) The corresponding folded
arc.

which implies that the sample y(l), which is consumed during the l-th iteration of V, is

produced during the (Ml — [Mi2 -Hi))-th iteration of U. Sample y(l) is consumed by Hy

in time unit Nyl + v and is produced by Hu in time unit N(j(Ml-(Mi2+ii)) + u. If Hu

is pipelined by Py stages, then y(l) is available at time unit N(j(Ml- (Mi2+h))+u+Pu-

Therefore, y(l) must be stored for

D$(U->V) = Nvl + v - (Nu(Ml - (Mi2 + h)) + u + Pu)

- (Nv - MNu)l +Nu(Mi2 + i\) - Pu+v-u

time units. As in the single-rate case, we would like this expression to be independent

of I. This can be achieved by forcing Ny = MNu, which implies that node U executes

M times for each execution of node V. This is intuitive since the output of node U

is decimated by M before reaching node V. With Ny = MNu, the folding equation

becomes

Dg{U -> V) = Nu{Mi2 + ti) -Pu + v-u, (4.2)

which is independent of the iteration number, I.

Since node V is scheduled to execute on hardware operator Hy at time units Nyl +

v, the data on arc U -» V are input to Hy at time units Nyl + v as illustrated in

94

Figure 4.6(b). For the case of M = 1, i.e.. where the decimator does not affect the data

stream, iy and i2 can be combined as i = i\ + i2, and Ny = Ny = N, where N is the

iteration period of nodes U and V. Substituting these expressions into (4.2) gives the

single-rate folding equation (4.1).

The Folding Equation for Arcs Containing Expanders

Consider the arc U -» V in Figure 4.7(a), where the output of node U passes through

i\ delays, expansion by L. and i2 delays before reaching node V. Let the Z-th iteration

of node U execute at time unit Nu I + u and the /-th iteration of V execute at Nyl + v,

where the folding orders satisfy u € [0,Nu) and v € [0, Ny).

x(/), iwl(l)l ,^(0, , y(/)
U * i'iD tL ^D V

(a)
Nul+Nv(Lil+i2)+v

(H^HPUDI^CU-V)

(b)
Figure 4.7: (a) An arc U —*■ V which contains an expander, (b) The corresponding
folded arc.

The signals labeled in Figure 4.7(a) are related by

wi{l) = y(l + h)

t»i(0 = w2(Ll) = y{Ll + i2)

x{l) = wi{l + ii) = y(L(l + ii) + i2)

which implies that sample x(l), which is the output of the Z-th iteration of U, is used

as the input of the (L(l + i\) + i2)-tb. iteration of V. Sample x(l) is available at the

95

output of processor Hu at time unit Nyl + u + Pu and is consumed by Hy at time unit

Ny(L(l + i\) + i2) + v, so x(l) must be stored for

Df{U^V) = Nv(L(l + i1)+i2) + v-(Nul + u + Pu)

= (NvL-Nu)l + Nv(Lii+i2)-Pu + v-u.

For this expression to be independent of I, NyL = Nu must hold. This implies that

node V executes L times for every execution of node U, which makes sense since the

output of node U is expanded by L before reaching node V. With NyL = Nu, the

folding equation becomes

Df(U -+ V) = Nv{Lix +i2)-Pu + v-u, (4.3)

which is independent of the iteration number, I. The samples on the folded arc are input

to Hv at Nvl + u + Pu + Df(U -> V) = Nvl + Ny(Lii + i2) + v, so the folded arc is

switched at the input of Hy at Nvl + Ny{Li\ + i2) +v,as illustrated in Figure 4.7(b).

For the case of L = 1, i.e., where the expander does not affect the data stream, ii and

i2 can be combined as i = i\ + i2, and Nu = Ny = N, where N is the iteration period

of nodes U and V. Substituting these expressions into (4.3) gives the single-rate folding

equation (4.1).

4.4 Retiming for Folding

Retiming for folding is the process of retiming a DFG so the number of delays on any

folded arc is nonnegative. The constraints which guarantee this for single-rate folding

have been derived in [28]. In this section, we review the single-rate constraint and derive

the retiming constraints which ensure that the number of folded arc delays is nonnegative

for multirate folding.

96

4.4.1 Single-Rate Case

The constraint which guarantees that the number of folded arc delays is nonnegative for

single-rate arcs was derived in [28] to be

DS
F(U ->■ V)

r{U)-r(V)< (4.4)
N

This equation is a special case of the constraints which are derived in the next subsection

for arcs with decimators or expanders.

4.4.2 Multirate Cases

For (4.2) to be useful, Dp(U -» V) > 0 must hold given a feasible schedule. The data-

flow graph can be retimed to satisfy this condition. Let i[and i'2 be the number of delays

on arc U -> V after retiming. Using (4.2), the number of delays on the folded arc after

retiming is

D'P{U -> V) = Nu{Mi'2 + i\) -Pu + v-u.

The values of i[and i2 are related to i\ and i2 by

i\ = n + Mr{Duv) - r(U)

and

i'2 = i2+r{V)-r{Duv),

where r(u) and r(v) are the retiming values of nodes U and V, respectively, i.e., the

number of times one delay is removed from each of the output arcs of the node and

one delay is added to each of the input arcs of the node. According to multirate DSP

fundamentals reviewed in Section 4.2, the retiming value of the decimator, r(Duv), is

the number of times one delay is removed from its output and M delays are added to

97

its input. Substituting the expressions for i[and i'2, we find

D'P(V-*V) = Nu[M{i2+r{V)-r{Duv))+ix

+Mr(Duv) - r(U)] -Pu + v-u

= D$(U-4V) + Nu{Mr(V)-r(U)),

which is independent of r(Duv). We can retime the data-flow graph for folding by forcing

D'^(U -» V) > 0, which gives

D$(U -+ V)
r(U) - Mr(V) <

Nu (4-5)

Similarly, we can use retiming to guarantee Df{U -+ V) > 0, where Df(J7 -> V) is

computed as in (4.3). If i[and i'2 are the number of delays on the arc after retiming,

then

D'£(U -> V) = Nv(Li[+ i'2) -Pu + v-u.

The expressions for i[and i'2 are

»; = ti + r{Euv) - r(U)

and

i'2 = i2 + r{V)-Lr(Euv),

where r(Euv) is the retiming value of the expander, which is the number of times we

remove L delays from its output and add one delay to its input. Substituting, we get

£'/([/-> 10 = Nv[L(il+r(Euv)-r(U))+i2 + r{V)-Lr(Euv)]-Pu + v-u

= Df(U-+V) + Nv{r(V)-Lr(U)).

as the number of folded arc delays after retiming. Forcing D'p(U -+ V) > 0 gives

D§(U -> V) Lr{U) - r(V) <
Nv

98

Caution must be exercised when retiming a multirate DFG due to its periodically

time-varying nature. For example, consider the multirate DFG in Figure 4.8(a). If

we retime this DFG by assigning the adder a retiming value of -1 and assigning the

multiplier a retiming value of 0, we get the DFG in Figure 4.8(b). The problem is that

these two circuits have completely different functionality. In the single-rate case, retiming

an input node simply results in a delay the output signal, where this example shows that

retiming an input node of a multirate DFG can completely change the functionality of

the circuit. This issue is taken into consideration in the design example in Section 4.6.

y(n) a y(n) a

z,(n) z2(n)

(a) (b)

Figure 4.8: (a) A multirate DFG which computes zx{n) = a(x(2n) + y(2n)). '(b) Retimed
version which computes z2{n) = a(x(2n - 1) + y(2n - 1)).

4.5 Memory Requirements for Folded DSP Architectures

In this section, we derive expressions for the minimum number of registers required by

a folded architecture. The expressions are based on the assumption that a node U in a

DFG is one of the following types:

• Type S: Each outgoing edge of node U contains no decimators and no expanders.

• Type D: Each outgoing edge of node U contains one decimator (| M) and no

expanders.

• Type E: Each outgoing edge of node U contains no decimators and one expander

(tu).

99

We begin by computing the number of registers required to store the output signal of

a Type S node. We then compute the number of registers required to store the output

signals of Type E and Type D nodes. Finally, we compute the number of registers

required to implement a DSP algorithm which may contain Type S, Type D, and Type E

nodes.

4.5.1 Type S Nodes

Consider the simple case of an arc U -»• V as shown in Figure 4.5. The minimum number

of registers required to implement the folded edge in Figure 4.5(b) can be calculated using

life-time analysis. The idea is to compute the number of samples which exit pipelined

processor Hu and enter processor Hy prior to time unit K. By subtracting the number

of samples which enter Hy from the number of samples which exit Hu, we find the

number of live samples at time unit K. The minimum number of registers required to

implement the folded edge is the maximum number of live samples over all K.

As in Section 4.3, we assume that the /-th iteration of nodes U and V are scheduled

to execute at time units Nyl + u and Nyl + v, respectively. We found in Section 4.3 that

for this to be feasible Nu = Nv must hold. If we let xt, I > 0, be the result of the /-th

iteration of node U, then the production time of xi, which is the time unit that n exits

pipelined processor Hv in Figure 4.5(b), is pXt = Nul + u + Pv. The consumption time

of xi, which is the time unit that xt enters processor Hy, is cx, = Px, + Df{U -> V).

The number of samples which have production times prior to time unit K (i.e., which

satisfy pXl < K) is

rp,u(K) =
K -Pxo

(4.6)
Nu

where \x] is the ceiling of x, which denotes the smallest integer greater than or equal

to x. The number of samples with consumption times prior to time unit K (i.e., which

100

satisfy cX[< K) is

rc,u(K) =
K-c XQ

Nu
(4.7)

We define xi to be live over the interval (pXl,cXl]. Using this definition, we find that the

number of samples that are live at time unit K is given by ruveiu(K) — rp>u{K)-rCtu(K),

which is

ruve,u{K) =
'K-pX0'

Nu
—

'K-cxo'
Nu

(4.8)

The minimum number of registers required to implement the Df (U -> V) delays in

Figure 4.5(b) is the maximum value of ruvey{K) over all K. The value of nivey(K) is

periodic in K with period Nu because the folded architecture operates periodically with

period Nu- Therefore, we only need to evaluate (4.8) for Nu consecutive time units.

Evaluating (4.8) at time units K = qNu + n for some integer q and n € [0, Nu) results

in the number of live samples at time partition n, given by

'qNu + n-pXo
riive,u(n) =

Nu

" ~ PXQ

Nu

qNu + n-(pX0+Ds
F(U^V))

Nu

n-{pX0+Ds
F{U^V))

Nu

The minimum number of registers required to implement the Dp(U -> V) delays is the

maximum value of rnV(,tu{n) over the interval n G [0, Nu), i.e.,

rS = JS^ , {riive,u(n)} .
ne[0,Wt/)

If we let B = -pXo, A = D^(U ->• V), and N = Nu, then Lemma 3.1 can be used to

show that

(max)
rlive,U

DS
F{U -» V)

Nu

is the minimum number of registers required to implement the folded edge in Fig-

ure 4.5(b).

101

The more general case, where the output of the node is allowed to be the source of

one or more arcs, is now considered. Let S\j be the set of outgoing edges of node U. We

assume for this discussion that node U is a Type S node.

If xi is an output sample of node U, then the latest time unit in which x\ is scheduled

to be used by a processor is

ex, =Px(+max {£>£([/4?)} (4.9)

If we let

Dffir> = mK{Ds
F(U±-l)},

then (4.9) can be rewritten as

Prj — Pxi T *sFU

The expressions for rPtU(K) and rc<u(K) for the output signal of node U are the same

as in (4.6) and (4.7), and the number of live samples at time unit K is given by (4.8).

Substituting pxo =u + Pv, cXo = pXo + DS
F
{™ax\ and K = qNv + n into (4.8) gives the

number of live samples at time partition n e [0,Nu), which is

rlive,u{n) =
n-Pxo

Nu
n ~ Pxo - DFU

Nu
(4.10)

Lemma 3.1 can be used to show that the maximum of the expression in (4.10) for

ne [0,Nu) is

(max) _
rlive,U —

D S(max)
F,U
Nu

which is the minimum number of registers required to implement the Type S node.

Example 4.1 Consider the Type S node in Figure 4.9(a), where the the iteration periods

for the nodes are Nu = NVl = NVi = 2. The folding orders for the nodes are u = 0,

102

Vi = 0, and u2 = 1, and we assume that node U is executed by a single-stage pipelined

processor, i.e., Py = 1. The folding equations are

£>£([/-*Vi) = 2(2)-1+0-0 = 3

Df(U->V2) = 2(1)-1 + 1-0 = 2,

so DF,U
X = max (3) 2} = 3. The minimum number of registers required to implement

this Type S node is

m
= 2.

This can also be seen in the lifetime chart in Figure 4.9(b), where the maximum number

of live samples for any time step is 2.

D D -©
-®

Time
o
l
2
3
4
5
6
7
8
9
10

live samples

(a) (b)

Figure 4.9: (a) A Type S node U. (b) The lifetime chart of samples in the folded
architecture.

4.5.2 Type E Nodes

In this section we show how to compute the minimum number of registers required to

store the output signal of a Type E node. We begin by computing the minimum number

of registers required to implement the folded edge in Figure 4.7(b). Let xi be the output

of the Z-th iteration of U, which is available at pX[= Nvl + u + Py. This sample is

103

consumed by V at cXl = pXl + Df(U ->■ V). At time unit K, the number of samples

with pX{ < K is

~K -Pxo'
rP,u(K) =

Nu

One sample of xt is produced by node U every Nv time units. Each of these samples is

consumed by node V, so one sample of X[must be consumed by node V every Nu time

units in order to avoid a build-up or deficiency of samples of xi on the folded arc. Since

node V consumes one sample of xi every Nu time units, the number of samples with

cI(< K is

rc,u(K) =
K-< -10

Nu

Keeping Figure 4.7 in mind, it is interesting to note that while U produces a sample

of xi every Nu time units and V consumes a sample of xi every Nu time units, node

V is actually executed in hardware once every Ny = Nu/L time units. As a result,

only (l/Z,)-th of the executions of node V in hardware are used to process the output

of node U. In a typical multirate system, node V will have L input arcs, each of which

occupies (l/L)-th of the executions of V in hardware, so all executions of V in hardware

are utilized.

The number of live samples of x; at time unit K is

riwe,u(K) = K -Pxo'
Nu

—
K -cX0'

Nu
(4.11)

Substituting K = qNv + n and cxo = pXo + D§(U ->• V) gives

riive,u{n)
n-Pxo

Nu

n-(pX0 + Df{U^V))

Nu

which is the number of live samples of Xj at time partition n 6 [0, Nu). Lemma 3.1 can

be used to find the minimum number of registers required to implement the folded arc,

104

which is

(max) , / \ i riive,u = jftax {rKw.,£/(n)} =
Df(U -» V)

Computing the memory requirements for a general Type E node, i.e., where the

output of node U can be input to several other nodes after expansion by L, is quite

simple. Let £u be the set of outgoing edges of node U, and let

i?^=m«{z>f(tf4?)}.

The production time of xt is pXl = Nul + u + Pv, and the consumption time is cx, =

Pi, + DF™ax . The number of live samples at time unit K is given by (4.11), so we can

substitute K = qNy + n along with expressions for pxo and cI0 to get

riive,u(n) =
Nu

n-(pX0 + DE
F^)

Nu

and it follows from Lemma 3.1 that

(max) r / \ i rlive,u = max {rHve,u(n)} =
D E(max)

F,U

Nu

Example 4.2 Consider the Type E node in Figure 4.10(a) where node U has iteration

period Nu = 6 and nodes V\ and V2 have iteration period NVl = Ny2 - 2. The folding

orders for the nodes are u = 2, vi = 0, and u2 = 1, and we assume that node U is

executed by a single-stage pipelined processor, i.e., Pu = 1. The folding equations are

Df{U-*Vi) = 2(3(2)+0)-1+0-2 = 9

D${U-+V2) = 2(3(2)+ 1)-1 + 1-2 = 12,

50 ^F,u ~ max {9> 12} = 12. The minimum number of registers required to implement

this Type E node is

T121
= 2.

12
6

This can also be seen in the lifetime chart in Figure 4-10(b), where the maximum number

of live samples for any time step is 2.

105

2D t3 D

(a)

Time

0
1
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24

live samples

(b)

Figure 4.10: (a) A Type E node U. (b) The lifetime chart of samples in the folded
architecture.

4.5.3 Type D Nodes

In this section we show how to compute the minimum number of registers required

to store the output signal of a Type D node. We begin by computing the minimum

number of registers required to implement the folded edge in Figure 4.6(b). Let xi,

/ > 0, be the result of the l-th. iteration of U. The first step is to partition n into M

subsequences xf = XMJ+W. for j > 0 and m 6 [0,M). We must now determine which

of these M subsequences of X[is consumed by node V. To determine this, recall that

y{k) = x{M(k - i2) - h) in Figure 4.6(a). This can be rewritten as y(k) = x(Mk2 + &i)

where

k2 = k-i2- -T7
M

106

and

ki = M
M -n-

Notice here that 0 < kx < M - 1 always holds. Based on this analysis, we can see

that node V in Figure 4.6(a) consumes the subsequence xm = XMj+m for j > 0 and

Sample xf is output from pipelined processor H\j at time unit pxm = Nu(Mj + m) +

u + Py. This sample is input to processor Hy at time unit cxm = pxm + Dp(U -¥ V).

One can see from these expressions that one sample of x^ is produced and consumed

every Ny = MNu time units. At time unit K, the number of samples of xj with

pxm < K is

rP,un(K) =
■K-v,

and the number with consumption times satisfying cxm < K is

rc,um(K) =

The number of live samples of x^ at time unit K is

riive,Um(K)
Nv

-
K ~Cxm-

Nv
(4.12)

Substituting K = qNv + n for integer q and n G [0, Nv) and cx™ = pxm + D$(U -4 V)

gives

riive,um{n) =
Nv

n-(Pxo + D$(U^V))
Nv

Using Lemma 3.1, we find that the number of registers required to implement the folded

edge in Figure 4.6(b) is

(max) r / \ ■> rlive,u = max {rlive,u(n)}
D$(U->V)

Nv

We now consider the memory requirements for a general Type D node, where the

output of node U may be the input to several nodes. Let S\jm denote the set of outgoing

107

edges of node U which are incident into nodes which consume the subsequence x^. In

other words, each edge e e SUm satisfies M [^] - %x = m, where ti is the number of

delays on e between U and the decimator on e.

The number of live samples at time unit K for the edges in £Um is given by (4.12).

The production time of xf is still psm = Nu(Mj + m) + u + Pv. The consumption time

is now cxm = Pxm + Dp^x\ where

n - (Num + u + Pv)
Nv

n - (Num + u + Pu + 0%™"°)

Nv

Using these expressions along with K = qNv + n in (4.12) gives

riive,um{n) =

as the number of live samples of subsequence xf at time partition n € [0, Nv).

The minimum number of registers required to implement the edges in £Um is

(max) r / \ i r«ve,um = n™xv){riive,um(n)}.

(4.13)

(4.14)

Lemma 3.1 can be used to show that

Uve,Un

j-.D(max)
UF,Um

Nv
(4.15)

The amount of memory required to store xMl+m can be determined using (4.15) for

each m € [0,M). Therefore, one might mistakenly assume that the number of registers

required to store all output samples of U is the sum of the minimum number of registers

required to store each of the M subsequences xf, i.e., an incorrect expression for the

minimum number of registers required to store the output samples of node U is

M-l

771=0

D D(max)
F,Um

NV
(4.16)

108

The correct technique is to find the maximum value over n 6 [0,NV) of the sum of the

number of live samples for the M subsequences xf. Therefore, to examine the total

number of live samples at time partition n G [0, iV», we use

ruve,u{n) = J2 riive,um{n), (4.17)
m=0

and take the maximum of this expression. Combining (4.17) with (4.14) results in

"n - (Num + u + Pu + D%™x))
rlive,u{n) = ^2

m=0

M_1 ''n-iNum + u + Pu)
Nv Nv

(4.18)

The minimum number registers required to store the output samples of node U is the

maximum of rliveiU(n) over the interval [0,Ny), given by

rS= max . {ruve,u{n)} . (4.19)
n£[0,Nv)

We now summarize the technique for determining the minimum number of registers

required to implement the output of a Type D node.

1. Partition the outgoing edges of node U into M sets £(/m, where an edge e G Sum

has i\ delays between U and the decimator on e, and M \^\ - i\ = m holds.

2. Compute the quantity in (4.13) for m € [0,M).

3. Compute the minimum number of registers using (4.18) and (4.19).

Example 4.3 In this example we compute the memory requirements for the Type D

node in Figure ^.11. The iteration periods of the nodes are Nu = 2 and Ny{ = 6 for

i = 0,1,2,3. The folding orders are u = 1, v0 = 1, ui = 2, v<i = 4, and v3 = 5. Node U

is assigned to a processor which is pipelined by one stage, i.e., Pu = 1. Let e* be the

label of the edge from node U to node V{, i.e., the four edges of the DFG are U 4 Vi

109

for i = 0,1,2,3. Recall that £Um is the set of edges which connect node U to nodes

which consume samples x(Ml + m), m e [0,M), where x(n) is the output of node U, so

£uo = {e2,e3}, £ui = {eo}, and £u2 = {e\}. The folding equations are

D$(U%Vo) = 2(3(1)+2)-1 + 1-1 = 9

D$(U%Vi) = 2(3(0)+ 1)-1 + 2-1 = 2

D%{U%V2) = 2(3(0) +3)-l+4-l = 8

D${U%V3) = 2(3(2)+0)-1 + 5-1 = 15,

and the values ofDp^' are as shown in Table 4.1.

Table 4.1: Values of D(™^ for Example 4.3.

m 0 1 2
n(mai) 15 9 2

u

2D 13 - D

D \3

3D 13

13 2D

Figure 4.11: A Type D node U with several fanout arcs.

The correct way to compute the minimum number of registers is to use (4-19), which

for this example is

(max) I v-"*

n€[0,6) . m=0

n - (2m + 1 + 1) n-(2m + l + l + £>g^Ql))
6

110

= max <
n€[0,6) l

"n-2'
6

-
"n-17"

6
+ 'n — 4'

6
-

"n-13"
6

+ n — 6"
6

-
"n-8"

6

= max{4,5,4,4,4,5} = 5.

To see that (4-16) does not compute the minimum number of registers, note that (4-16)

gives

m=0

p.D(max)
UFfJm = 3 + 2 + 1 = 6,

which is one larger than the minimum number of required registers.

The lifetime chart [51] which verifies that 5 registers are required is shown in Fig-

ure 4.12.

4.5.4 Memory requirements for a general DFG

Consider a DFG, where a node in the DFG can be a Type S, Type D, or Type E node.

Let U denote the set of nodes in the DFG which are Type S, Type D, or Type E nodes.

Based on the derivations of this section, we can write the expression for the number of

live samples in the folded architecture for time unit n as

riive(n) = 2J rHve,u(n),
ueu

(4.20)

where the expressions for rnvey(n) are summarized in Table 4.2. The minimum number

of registers required to implement this architecture is the maximum value of rnve(n) over

the interval [0, Nicm), where JV/cm is the least common multiple of the denominators of all

of the ceiling functions in (4.20). These concepts are now demonstrated in the following

example. This example is intended to demonstrate the memory minimization techniques

for multirate folding that are introduced in this section. Examples which demonstrate

how to use multirate folding to synthesize useful architectures, such as those for M-ary

tree structured filter banks, are given in Section 4.6 and in [36].

Ill

time

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

m = 0 m=l m = 2

" "

live samples
— 0

— 1
— 2
— 2
— 3
— 3
— 3
— 3
— 4
— 4
— 5
— 4
— 4
— 4
— 5
— 4
— 5
— 4
— 4
— 4
— 5
— 4

Figure 4.12: The lifetime chart for Example 4.3. The folded implementation requires 5
registers since this is the maximum number of live samples at any time step.

Example 4.4 Consider the multirate DFG in Figure 4.13. In this figure, A is a Type D

node, B and C are Type S nodes, D and E are Type E nodes, and F is a sink node.

The iteration periods for the nodes are NA = Np = 1 and NB = ATC = ATD = NE = 2.

The folding orders are a = 0, b = 1, c = 0, d = 0, e = 1, and f = 0. Each node is

executed in hardware by a processor which is pipelined by one stage, so PA = PB = Pc =

PD = PE = PF = 1. In the architecture, nodes B and C are time multiplexed to the

same processor, and nodes D and E are time multiplexed to the same processor. Based

112

Table 4.2: Summary of the expressions for ruveyU(n) for the various types of nodes. Note
that u is the folding order of node U, and P\j is the number of pipelining stages in
hardware unit Hy which executes node U.

Node Type Expression for rnvep{n)

S rn-fu+Pu)"! n-iu+Pu+Dp™*))'
N

D '\n-(Num+u+Pu)~\ n-(Num+u+Pu+D^™X))'
Nv

)

E rn-(u+Ptr)l
1 Nu -

~ n-(u+Pu+DE
F
{™ax))~

Nu

-1

\2

\2
-1

'
-i

z

" V

Figure 4.13: Multirate DFG for Example 4.4.

on these parameters, the folding equations are

D$(A -> B)

D${A -». C)

DS
F(B -»• D)

DS
F(B -> E)

DS
F(C -> D)

DS
F{C -> E)

Df{D -> F)

1(2(1)+0)-1 + 1-0 = 2

1(2(1)+ 1)-1 + 0-0 = 2

2(1)-1 + 0-1 = 0

2(1)-1 + 1-1 = 1

2(1)-1 + 0-0 = 1

2(1)-1 + 1-0 = 2

1(2(1) + !)-1 + 0-0 = 2

113

Df(D->F) = 1(2(1)+0)-1+0-1 = 0.

The maximum fanout values are ^f = 2, D$™x) = 2, DS
F^

ax) = 1, DS
F^

ax} = 2,

DFD = 2, and Z?F E =0. Recall that node A has two maximum fanout values (for

m = 0 and m = 1) because it is a Type D node with decimation by M = 2 on each of its

output arcs.

The number of live samples at time partition n is given by

riivein) = ^2 nive,u{n)
Ue{A,B,C,D,E]

which is

riive(n)
'n -11 "n -31 "n -21 "n -41 'n -21 ~n -31

2 2
+

2 2
+

2 2

+ "n —
2

1" "n —
2

3"
F

"n —
2

r 'n —
2

3" +
"n —

2
2- "n —

2
2-

w/iere i/ie ,/irst two terms are for AQ, the next two for A\ followed by two terms each for

nodes B, C, D, and E. The minimum number of registers required for the architecture

is

r£eQl) = max {r(i„e(n)} = max{4,5} = 5.
n6{0,l}

One implementation which uses 5 registers is shown in Figure 4-H> where processor Pi

executes node A, processor P2 executes nodes B and C, processor P3 executes nodes D

and E, and processor P4 executes node F.

4.6 Design Example

In this section we give an example which illustrates how the folding equations, retiming

for folding constraints, and memory minimization can be used to synthesize a single-rate

architecture for a multirate DSP algorithm. The algorithm we consider is the three-level

114

IN^P^H^J^RT R2 <P^' D

-J-°-^R4 R5

2/+1

OUT

Figure 4.14: Folded architecture for Example 4.4. D denotes an internal pipelining delay,
while R{ denote external registers. This implementation uses five registers, which is the
minimum value computed in the example.

orthogonal discrete wavelet transform analysis filter bank which uses third-order wavelet

filters, as shown in Figure 4.15 [5]. The schedule for the architecture is given in Table 4.3.

The steps we take in deriving the folded architecture are as follows:

1. Write the folding equations for the DFG.

2. Write the retiming-for-folding constraints and find a solution.

3. Write the folding equations for the retimed DFG.

4. Determine the memory requirements for the folded architecture.

5. Allocate data to the minimum number of registers.

6. Draw the folded architecture.

Each of these steps is described in detail in the following subsections.

115

hhh

Figure 4.15: A three-level orthogonal discrete wavelet transform analysis filter bank
which uses third-order wavelet filters.

4.6.1 Folding Equations for the Original DFG

The multirate DFG in Figure 4.15 has 36 single-rate edges and 6 multirate edges which

contain decimators. The number of folded delays on each edge prior to retiming is given

in Table 4.4 for the single-rate edges and in Table 4.5 for the multirate edges. These

values are computed by using the number of delays on the edges in the DFG and the

schedule in Table 4.3 and plugging these values into (4.1) and (4.2).

116

Table 4.3: Schedule for the three-level orthonormal DWT example. The numbers across
the top of the table represent the eight time partitions. An X denotes a null operation,

ear that the folc ed architecture will have 87.5% hardware utilization.
0 1 2 3 4 5 6 7

Processor Mi M10 Mu Mio M12 M10 Mu Mio X
Processor M2 M20 M2i M20 M22 M20 M21 M20 X
Processor M3 M30 X M30 M31 M30 M32 M30 M31

Processor M4 M40 X M40 M41 M40 M42 M40 M41

Processor M5 M>2 M50 M51 M>0 X M50 M51 A^50
Processor Me M62 M60 Mei M6o X M6o Mei M6o
Processor A\ Aw An Aw X Aio An Aio ^12
Processor A2 A20 A21 A20 X A20 ^21 A20 ^22
Processor A3 A31 A30 A32 A30 A31 ^30 X ^30
Processor A4 A41 A40 A42 ^40 A41 ^40 X ^40

4.6.2 Retiming for Folding

There are 36 retiming for folding equations for single-rate edges and 6 for multirate edges.

These are given in Table 4.4 for the single-rate edges and in Table 4.5 for the multirate

edges. The retiming for folding equations used are (4.4) and (4.5). The columns labeled

Ruv give the values for the right-hand-side of the inequalities for each edge. Note that

we also impose the constraint r(IN) = 0. This constraint avoids the possibility of adding

new delays at the input which can have the effect of changing the functionality of the

circuit as was described in Section 4.4. The columns labeled r(U) and r(V) in Tables 4.4

and 4.5 give a solution to these inequalities.

4.6.3 Folding Equations for the Retimed DFG

Based on the retiming values for the nodes, folding equations can be written for the

retimed graph. Because the retiming solutions satisfy all of the retiming-for-folding

equations, the folding equations now result in a nonnegative number of delays for each

folded edge. The new folding equations are given in Table 4.4 for the single-rate edges

117

and in Table 4.5 for the multirate edges.

4.6.4 Memory Requirements of the Folded Architecture

The memory in the folded architecture can be found using (4.20). Since the architecture

implements the retimed DFG, the number of delays on the folded edges for the retimed

graph are used in the expressions in Table 4.2. An important point is that an edge with

a decimator can change from set E\ji to £us as a result of retiming, and this change

must be taken into account to get an accurate evaluation of the memory required by the

folded architecture. Taking this into account, the minimum number of registers required

to implement the folded architecture is 14.

4.6.5 Allocate Data to the Minimum Number of Registers

To keep routing simple, we attempted to localize data within the architecture while still

using only 14 registers. For example, we were able to allow only the output samples of

multiplier M\ to occupy registers R\ and R2 (see Figure 4.16), which avoids routing the

outputs of other processors to these two registers. Allocation techniques proposed in [51]

were used to allocate the data to the 14 registers.

4.6.6 The Folded Architecture

The folded architecture is shown in Figure 4.16. This architecture uses the theoretical

lower limit of 14 registers. Delays denoted as D are internal pipelining delays, while

the 14 external registers are labeled R{. The fact that this architecture has the same

functionality as the DFG shown in Figure 4.15 has been verified by simulation using

Matlab Simulink.

This is not the only architecture which can be designed for this algorithm using

118

multirate folding. We have also designed a different architecture, which uses only three

multipliers and two adders, using the systematic multirate folding technique proposed

in this chapter for the three-level orthogonal discrete wavelet transform which uses 7-th

order FIR filters, but this example is not included to save space. This demonstrates

that multirate folding can be used to design a broad class of single-rate architectures for

multirate DSP applications.

E Gj*
-}o-[iü3-Iüii -fo-jänU-o D-JRÜL-

!?*0 941*1 Xp.,^-1

Figure 4.16: Folded architecture for the three-level orthogonal discrete wavelet transform
analysis filter bank which uses third-order wavelet filters. If an input to a switch is not
labeled, then this input is switched in at all time units not assigned to other inputs of
the switch.

4.7 Conclusions

A novel multirate folding transformation has been developed for mapping multirate

DSP algorithms to single-rate VLSI architectures. This transformation can be used

to synthesize architectures for a wide range of DSP applications which use multirate

algorithms, such as signal coding and analysis and adaptive signal processing.

Multirate folding equations were derived for arcs which contain decimators or ex-

panders. In both cases, the folding equation contains single-rate folding as a special

case. These folding equations were then used to solve two important related prob-

119

Table 4.4: Folding and retiming equations for the single-rate edges in the DWT example.
timing- for-fol ding equation for edj ;eC/^ V is r U)-r (V) < Ruv-

U V
folded delays

before retiming
r(U) r(V) Ruv

folded delays
after retiming

Afio -4l0 -2 0 2 -1 2
Mio M30 -2 0 1 —1 0
M2o ^20 -2 0 2 -1 2
M2o M40 -2 0 1 -1 0
M30 ^20 -2 1 2 -1 0
M40 -4io -2 1 2 -1 0
-4io A30 0 2 3 0 2
-4io M50 0 2 2 0 0
-420 -440 2 2 3 1 4
A20 M60 2 2 2 1 2
M50 -44o -2 2 3 -1 0
Mm -43o -2 2 3 -1 0
Mn An -2 2 3 -1 2
Mn M31 0 2 2 0 0
M2i A2i -2 2 3 -1 2
M2i M41 0 2 2 0 0
Mn M\ -4 2 3 -1 0
M41 An -4 2 3 -1 0
An -43l -2 3 4 -1 2
An M51 0 3 3 0 0
A2x -441 2 3 4 0 6
A2x Afei 4 3 3 1 4
M51 -441 -4 3 4 -1 0
Afei -431 -4 3 4 -1 0
Mi 2 -4l2 2 2 2 0 2
M12 M32 0 2 2 0 0
M22 -422 2 2 2 0 2
M22 M42 0 2 2 0 0
M32 -422 0 2 2 0 0
M42 -4l2 0 2 2 0 0
-A12 -432 -6 2 3 -1 2
-4l2 M52 -8 2 3 -1 0
A22 -442 2 2 3 0 10
A22 M62 0 2 3 0 8
M52 -442 0 3 3 0 0
M62 -432 0 3 3 0 0

120

Table 4.5: Folding and retiming equations for the multirate edges in the DWT example.
timing -for-fol ding equation for ed get/-) V is r (C/)-2 r(V) < Ruv.

U V folded delays
before retiming

r(U) r(V) ■Rf/V
folded delays
after retiming

IN Mio 0 0 0 0 0
IN Af20 1 0 0 1 1

■A30 Mn -1 3 2 -1 1
MQ Mn 1 3 2 0 3
Ml Mn 2 4 2 0 2
4»i M22 6 4 2 1 6

lems, namely, memory minimization in folded architectures and retiming for folding. By

deriving the multirate folding equations and solving these related problems, we have

formalized several crucial steps used in mapping multirate DSP algorithms to efficient

VLSI architectures.

A detailed design example of a three-level discrete wavelet transform analysis filter

bank was given. This example demonstrated how the multirate folding equations, along

with retiming for folding and memory minimization, can be used to design single-rate

architectures for multirate algorithms. Multirate folding can be used to design architec-

tures for a wide variety of filter banks as described in [36].

121

Chapter 5

Two-Dimensional Retiming

5.1 Introduction

Retiming [27] is a technique used to move delay elements around in a circuit without

changing its functionality. One effect of changing the locations of the delays is that

combinational rippling can be reduced, allowing the the circuit to be clocked at a higher

rate. Reducing combinational rippling also decreases the dynamic power dissipation in

the circuit [48] and allows the circuit to be operated with a lower supply voltage, both of

which lead to low power implementations [67]. Another effect of changing the locations

of delays is that the number of delay elements required can be reduced, resulting in

area-efficient implementations. In addition to retiming for high speed, low power, and

low area implementations, retiming is also an important step in scheduling for high-level

synthesis [11] -[38]. All of these applications of retiming have been studied for circuits

which operate on one-dimensional signals, such as digital audio.

Two-dimensional retiming [33, 34] is used to retime data-flow graphs (DFGs) which

operate on two-dimensional signals such as images. As digital image processing becomes

more popular in multimedia applications, the need for high speed, low area, and low

power implementations of multidimensional digital signal processing (DSP) algorithms

122

increases. Like one-dimensional retiming [27], two-dimensional retiming can be used

to increase the sample rate, reduce the area, and reduce the power consumed by a

synchronous circuit.

Techniques for reducing the execution times of 2-D DSP algorithms have been con-

sidered in the past. One way to speed up these algorithms is to process many iterations

concurrently, and it has been shown that this is often possible if the 2-D data are not

processed in line-by-line or column-by-column order, but rather are processed diagonally

[69, 70]. This technique requires an increase in the number of arithmetic units. Another

way to speed up these algorithms is to reduce the sample period using 2-D retiming tech-

niques [33, 34]. This technique does not require an increase in the number of arithmetic

units; however, as we show in this chapter, the algorithm for 2-D retiming in [34] often

results in an implementation which requires significantly more memory than is actually

needed. Since the area consumed by the implementation of a 2-D DSP algorithm can be

dominated by memory requirements [71], it is important to keep the memory require-

ments as small as possible. The algorithm for 2-D retiming in [33] is not very flexible

because it is only compatible with some very specific processing orders of the data.

In this chapter, we present two techniques for retiming two-dimensional data-flow

graphs (2DFGs). Each of these techniques minimizes the amount of memory required to

implement the 2DFG under a clock period constraint. The first technique, called ILP

2-D retiming, is based on an integer linear programming (ILP) formulation which consid-

ers the 2-D retiming formulation as a whole. While this technique gives excellent results,

it has slow convergence for large 2DFGs. The second technique, called orthogonal 2-D

retiming, is formulated by breaking ILP 2-D retiming into two linear programming prob-

lems, where each problem can be solved in polynomial time. The downfall of orthogonal

2-D retiming is that the results of the two linear programming problems can sometimes

123

be incompatible. A variation of orthogonal 2-D retiming called integer orthogonal 2-D

retiming is also based on a linear programming formulation, and this technique solves the

incompatibility problem which may be encountered using orthogonal 2-D retiming. The

techniques presented in this chapter result in retimed 2DFGs which require less memory

than than the technique in [34] and are compatible with considerably more processing

orders of the data than the technique described in [33].

This chapter is organized as follows. Section 5.2 describes some specifics of two-

dimensional data processing. Section 5.3 contains the ILP 2-D retiming formulation.

Orthogonal 2-D retiming and integer orthogonal 2-D retiming are presented in Sec-

tions 5.4 and 5.5, respectively. Comparisons with previous work are given in Section 5.6

and our conclusions are in Section 5.7.

5.2 Processing Two-Dimensional Data Sets

A two-dimensional DSP algorithm can be represented using a two-dimensional data-flow

graph (2DFG). A 2DFG G =< V, E, w, d > is a node-weighted and edge-weighted graph

such that

• V is the set of vertices (nodes) in G. The nodes represent computations.

• E is the set of edges in G. The edges represent communication between the nodes.

• w(e) is a 2 x 1 vector representing the dependency on edge e.

• d(v) is a nonnegative scalar representing the computation time of node v.

As an example, the 2DFG in Figure 5.1 describes the computation y(nuri2) — b +

ax(ni + 1, ri2 — 1). An iteration is the execution of each node in the 2DFG exactly once.

124

x(n,,n2)
X

b

y(n] ,n2) .+
Figure 5.1: A 2DFG which describes the computation y(n\,n2) = b + ax(n\ + l,n,2 — 1).

5.2.1 Overview of Two-Dimensional Retiming

The 1-D retiming equation given in [27] for the edge u A v in a 1-D DFG is given by

wr(e) = w(e) + r(v) — r(u),

where w(e) and wr(e) are the numbers of delays on e before and after retiming, respec-

tively, and r(u) and r(v) are the retiming values of nodes u and v, respectively. The 2-D

retiming equation for the edge u A v in a 2DFG is given by

wr(e) =w(e)+ r(u)-r(u), (5.1)

where w(e) and wr(e) are the 2 x 1 dependence vectors on e before and after retim-

ing, respectively, and r(u) and r(v) are the 2x1 retiming vectors of nodes u and v,

respectively.

A 1-D retiming r is said to be legal if wr(e) > 0 for all e e E. The conditions for a

legal 2-D retiming are derived in Section 5.3.1.

5.2.2 Types of Parallelism Available in 2-D Signal Processing

There are two types of parallelism available in 2-D signal processing. The first type of

parallelism is inter-iteration parallelism which can be achieved by increasing the amount

of hardware so that the multiple iterations can be executed concurrently. For example,

consider the 2DFG in Figure 5.2(a) which implements j/(ni,n2) = ay{nx - 1,ri2) +

Mni>n2 - 1) + x(ni,n2). Assume that this 2DFG is used to process a 3 x 3 data set.

125

Table 5.1: Four possible execution orders for the DFG in Figure 5.2(a) assuming a 3 x 3
ata set.

row-by-row
serial

column-by-column
serial

diagonal
serial parallel

Step 1 y(o,o) y(o,o) y(o,o) y(o,o)
Step 2 y(i,o) y(o,i) y(i,o) y(0,l),y(l,0)
Step 3 y(2,o) y(o,2) y(o,i) y(0,2),y(l,l),y(2,0)
Step 4 y(o,i) y(i,o) y(2,o) y(l,2),y(2,l)
Step 5 y(U) y(i,i) y(i,i) y(2,2)
Step 6 y(2,i) y(i,2) y(o,2) -
Step 7 y(o,2) y(2,o) y(2,i) —
Step 8 1/(1,2) y(2,i) y(i,2) —
Step 9 y(2,2) y(2,2) y(2,2) —

The output values y(ni,ri2) are dependent on one another as shown in Figure 5.2(b),

where, e.g., the arrow from y(l,0) to y(l,l) indicates that y(l,0) must be computed

before y(l, 1) can be computed. Four possible execution orders are given in Table 5.1.

x(n.,n2) 1^ ^ y(n,,n2)

y(0,0)
/X

y(0,D y(i,0)
^N /X

y(0,2) y(l,l) y(2,0)
X /X /

yd,2) y(2,l)

y(2,2)

(a) (b)

Figure 5.2: (a) A 2DFG which describes the computation y(ni,n2) = ay(n\ — 1,712) +
6y(ni,ri2 - 1) + x(n). (b) The dependencies for this 2DFG assuming it operates on a
3x3 data set.

While the three serial execution orders require a single hardware module and 9 time

steps to execute, the parallel execution order requires 3 hardware modules and only five

time steps to execute, where a hardware module is capable of executing one iteration in

126

one time step. The parallel execution order uses inter-iteration parallelism to speed-up

the execution of the 2-D signal processing algorithm.

The second type of parallelism is inter-operation parallelism. This involves retiming

the 2DFG so operations can be executed in parallel, resulting in a shorter clock period.

For the 2DFG in Figure 5.2(a), assume addition and multiplication require 1 and 2 time

units, respectively. The minimum clock period for this 2DFG is 4 time units because

there is a path through two adders and one multiplier (e.g., through nodes 4, 2, and

1) which has no delays. As a result, the time required to process the 3 x 3 data set

using a serial processing order is (4)(9) = 36 time units. The 2DFG in Figure 5.2(a)

can be retimed as shown in Figure 5.3 assuming r(l) = [0 0]T, r(2) = [0 0]T,

r(3) = [-2 1]T, and r(4) = [-1 0]T. This retimed 2DFG has a minimum clock

period of 2 time units because the longest path with no delays is through a multiplier

or two adders. The time required to process the 3x3 data set using the diagonal serial

processing order is now (2) (9) = 18 time units, so 2-D retiming has allowed us to speed

up the processing by a factor of 2.

The reason that 2-D retiming allows the circuit to be clocked faster is because oper-

ations in the retimed circuit can be executed in parallel. Table 5.2 shows some possible

execution times for the nodes in the unretimed 2DFG (Figure 5.2(a)) and the retimed

2DFG (Figure 5.3). Since multiplication and addition in the retimed 2DFG can be per-

formed in parallel rather than sequentially, 2-D retiming allows for an implementation

where operations are executed in parallel, hence the name inter-operation parallelism.

The remainder of this chapter assumes that a 2-D data set is processed using a serial pro-

cessing order, and we focus on exploiting inter-operation parallelism using 2-D retiming.

127

x(npn2) \ y(nt ,n2)

Figure 5.3: A retimed version of the 2DFG in Figure 5.2(a).

Table 5.2: Possible execution times for the unretimed 2DFG in Figure 5.2(a) and the
retimed 2DFG in Figure 5.3 assuming that addition and multiplication require 1 and
2 units of time, respectively. The unretimed 2DFG does not allow addition and mul-
tiplication to be executed in parallel, while the retimed 2DFG does allow addition and

tiplication to be executed in parallel.

time
unretimed 2DFG retimed 2DFG

node 1 node 2 node 3 node 4 node 1 node 2 node 3 node 4
0 * * * * *

1 * * * * *

2 * * * *

3 * * * *

5.2.3 Processing Order

A two-dimensional DSP algorithm can often be executed using several processing orders.

This was demonstrated in the previous section where three serial processing orders were

given in Table 5.1 for the 2DFG in Figure 5.2(a). A linear processing order is specified

using a scanning vector s = [s\ S2]T and an access vector a = [a\ a-i]T. Lines

orthogonal to the scanning vector are called access lines, and sample (rai,ri2) on access

line k satisfies nisi 4-n2«2 = k. The processing order is such that, for fci < fo, all samples

on access line k\ are processed before the samples on access line fo. The access vector,

128

which is orthogonal to the scanning vector (s -a = 0), defines the order in which samples

are processed on the access lines, such that sample n + a is processed immediately

following sample n. Lines orthogonal to the access vector are called scanning lines,

and sample (ni,n2) on scanning line k satisfies rna\ +n2a2 = k. As an example, the

processing order in Figure 5.4 is described by s = [1 1]T and a = [-1 1]T, and

sample (2,4) is on access line 6 and scanning line 2. In addition to linear processing

orders, nonlinear processing orders such as the Dovetail scan [72] also exist; however,

this chapter considers only linear processing orders.

5.3 An Integer Linear Programming Formulation of 2-D
Retiming

In this section we formulate the ILP 2-D retiming technique which considers causality,

the desired clock period, and the memory cost of the 2-D retiming solution.

5.3.1 Causality in 2-D Data Processing

A dependency w(e) in a 1-D DFG must represent a causal relationship. If the edge

u -> v has a negative number of delays, this indicates that node v is consuming data

before node u has produced the data, and this is not practical from an implementation

point of view. Causality restricts the number of delays on an edge in a 1-D DFG to be

nonnegative, which can be written as w(e) > 0 for all e€ E. The expression w(e) > 0 for

all e G E can be viewed as the condition for the compatibility between the dependencies

and the order in which the data is processed (which is dictated by time).

In 2DFGs, where the processing order is specified by s and a, there are two conditions

for the compatibility between the dependencies and the processing order. These two

conditions are the 2-D causality constraints. The first causality constraint states that

129

a dependency w(e) on the edge u A v cannot point from access line k2 to access line

k\ for ki < k2 because this would indicate that the data produced when access line k2

is processed is consumed when access line ki is processed, and this violates causality

because access line k2 is processed after access line fci. Mathematically, this causality

constraint can be written as

Causality Constraint 5.1 For all e € E, s • w(e) > 0 must hold.

The second causality constraint states that if the dependency w(e) lies in the same

direction as the access lines, then the dependency cannot point in the opposite direction

as the access vector because this would mean that the dependency points to the opposite

direction of processing of data. This can be expressed as

Causality Constraint 5.2 For alleeE such that s-w(e) = 0, a-w(e) > 0 must hold.

Example 5.1 For s = [1 1)T and a = [-1 1)T, Figure 5.4 shows how four

different dependencies would affect the sample at the (2,3) location. The dependency

w(e) = [0 -1]T represents a non-causal relationship because the value computed when

sample (2,4) is processed affects the value at sample (2,3), but sample (2,4) is processed

after (2,3). This dependency violates the first causality constraint because s-w(e) = —1.

The dependency w(e) = [0 1]T represents a causal relationship because the value

computed when sample (2,2) is processed affects the value at sample (2,3), and sample

(2,2) is processed before (2,3). This dependency satisfies the first causality constraint

because s • w(e) = 1. The dependency w(e) = [1 -1]T represents a non-causal re-

lationship because the value computed when sample (1,4) is processed affects the value

at sample (2,3), but sample (1,4) is processed after (2,3). This dependency violates

the second causality constraint because a • w(e) = -2 and s • w(e) = 0. The depen-

130

dency w(e) = [-1 1]T represents a causal relationship because the value computed

when sample (3,2) is processed affects the value at sample (2,3), and sample (3,2) is

processed before (2,3). This dependency satisfies the second causality constraint because

a • w(e) = 2 and s • w(e) = 0. D

scanning lines

3 2 10

(0.0)
»►ni

1 2

Figure 5.4: The effect of four dependencies on sample (2.3). Processing starts at sample
(0,0).

Let Hmax be the maximum number of samples on any access line. Then the length

of the longest access line is (Hmax - l)(a • a). In a practical situation, the length of

each dependence vector is not greater than the length of the longest access line, and this

implies that the projection of a dependence vector onto the access vector obeys

ffmax(a-a) > |a-w(e)|. (5.2)

This inequality is used in the following theorem to combine the two causality constraints

into a single constraint.

Theorem 5.1 Let (5.2) hold for all e e E. Then

Hmax(a- ■ a)(s • w(e)) + a • w(e) > 0

131

(5.3)

if and only if the following hold:

1. s • w(e) > 0, and

2. a • w(e) > 0 if s • w(e) = 0.

Proof: In the first part of the proof, we show that (5.3) implies

1. s • w(e) > 0, and

2. a-w(e) >0 ifs-w(e) =0.

The expression in (5.3) can be written as

. wn > ~(a-w(e))
■"max (.8-' ft)

Using (5.2), this can be written as s-w(e) > -1. Since s-w(e) is an integer, this implies

s • w(e) > 0. When s • w(e) = 0, the expression in (5.3) simplifies to a • w(e) > 0.

In the second part of the proof, we show that

1. s • w(e) > 0, and

2. a-w(e) >0 ifs-w(e) =0

imply (5.3). If s • w(e) > 1, then (5.3) holds because (5.2) states that a • w(e) >

-Hmaxia. -a). If s • w(e) = 0, then (5.3) holds because a • w(e) > 0. ü

If we let

F(x) = Hmax(& ■ a)(s • x) + a • x,

then causality can be written as F(w(e)) > 0 for all e G E. This definition of F(x) is

used throughout the remainder of the chapter. For a retimed 2DFG Gr, causality can

be written as F(wr(e)) > 0 for all e G E. A 2-D retiming r from G to Gr is legal if

F(w(e)) > 0 for all e 6 E.

132

5.3.2 The Clock Period Constraints

In this section we develop the constraints which can be used to specify a desired clock

period for the retimed 2DFG. Let p = v0 % vx 4 • • • e^' vk be a path in the 2DFG.

The delay of the path is d(p) = Yli=od(vi) and the dependency of the path is w(p) =

11i=o w(et)- The clock period 9(G) is defined to be the maximum propagation delay

through which any signal must ripple between clock cycles. Mathematically,

9(G) = max{d(p) : w(p) = 0}.

The derivations in this section follow the derivations in [27].

Let

W(u,v) = min{F(w(p)) : u A v}

and

D(u,v) = max{d(p) :u 1+v and F(w(p)) = W(u,v)}.

Lemma 5.2 Let G be a 2DFG, and let c be any positive real number. The following are

equivalent.

5.2.1 9(G) < c.

5.2.2 For all vertices u and v in V, if D(u,v) > c, then W(u,v) > a a.

Proof: (5.2.1 =>■ 5.2.2): Suppose 9(G) < c and let u and v be vertices such that

D(u,v) > c. Assume that W(u,v) < a a. If all edges in G are causal, then W(u,v) = 0,

so there exists a path «4D with propagation delay d(p) = D(u, v) > c and F(vr(p)) =

W(u,v) = 0, which implies w(p) = 0 and 9(G) > c. Contradiction.

(5.2.2 =» 5.2.1): Suppose 5.2.2 holds and let u A v be any path in G such that

F(w(p)) = 0. Then we have W(u,v) = F(w(p)) = 0, which implies d(p) < D(u,v) < c

133

(this is the contrapositive of "if D(u,v) > c then W{u,v) > a- a"). This implies 5.2.1.

D

A critical path is any path «4« with F(w(p)) = W{u,v). Assume that r is a 2-D

retiming that satisfies the causality constraints for a given processing order specified by

s and a. Let Wr(u,v) and Dr(u,v) have the same definitions on the retimed graph Gr

as W(u,v) and D(u,v) have on G. The following can be proven using techniques similar

to those used for the 1-D case [27].

• Wr(u,v) = W{u,v) + F(r{v) - r(u)).

• a path p is a critical path of Gr if and only if it is a critical path of G.

• Dr{u,v) = D(u,v) for all connected u,v eV

• the clock period $(Gr) is equal to D(u,v) for some u,v e V.

Using these results, we can prove the following.

Theorem 5.3 Let c be an arbitrary real number and let s and a be orthogonal vectors

which specify a linear processing order. Then r is a legal retiming such that $(Gr) < c

if and only if

5.3.1 F(r(u) - r(v)) < F(w(e)) for every edge u 4 v ofG, and

5.3.2 F(r(u) - r(u)) < W{u, v) - a • a for all vertices u, v € V such that D(u, v) > c.

Proof: The retiming is legal if and only if 5.3.1 holds. If r is indeed a legal retiming

of G, then by Lemma 5.2 the retimed circuit Gr has clock period $(Gr) < c under the

condition that Wr(u, v) > a • a for all vertices u,v eV such that Dr{u, v) > c. Since we

know Dr(u,v) = D{u,v) and Wr(u,v) = W{u,v) + F{r(v) - r(u)), GT has $(Gr) < c

134

under the condition that W(u,v) > -F(r(v) - r(u)) + a • a for all u,v G V such that

D(u,v) > c. Since F(r(v) - r(u)) = -F(r{u) - r{v)), this is equivalent to 5.3.2. D

5.3.3 The Memory Cost

For the ILP formulation to be complete, it requires a linear approximation of the number

of registers required to implement the retimed circuit. A linear approximation for the

number of registers required to implement the dependency w(e) should consider the

number of access lines and scanning lines crossed by the dependency. The number of

access lines crossed is s • w(e), and the maximum number of samples in an access line

is Hmax, so an upper bound on the number of registers required to store s • w(e) access

lines is Hmax(s ■ w(e)). The number of scanning lines crossed by w(e) is a • w(e), and

one register is required for a • a scanning lines that are crossed (to see this, consider that

the dependency corresponding to a single sample delay is w(e) = a); so an estimate for

the number of registers required due to scanning lines that are crossed is (a • w(e))/(a •

a). The linear approximation for the total number of registers required to implement

the dependency w(e) is Hmax(s • w(e)) + (a • w(e))/(a • a), which can be written as

F(w(e))/(a-a).

If a node has more than one output edge carrying the same signal (such a node is often

called a fanout node), the number of registers required to implement these edges is the

maximum number of registers on any one of them [21]. This is shown in Figure 5.5 for the

1-D case, where the naive implementation in Figure 5.5(a) uses 1 + 3 + 7 = 11 registers

while the efficient implementation in Figure 5.5(b) uses max(l,3,7) = 7 registers. Using

this concept, the number of registers required to implement the output edges of node v

is estimated to be

Rv = max{F(wr(e))/(a • a)}.

135

The cost function can be minimized by using COST = J2vev Rv where Ry > F(wr(e))

for all edges v ->?. Note that this cost represents the number of memory locations scaled

by a constant scale factor (a • a).

D

3Ö}—@ D 2D

HZDHS) -®
(a) (b)

Figure 5.5: (a) Fanout implementation using 14-3 + 7 = 11 registers, (b) Fanout
implementation using max(l,3,7) = 7 registers.

5.3.4 The Complete ILP 2-D Retiming Formulation

Theorem 5.3 specifies the conditions for a retiming to be legal and satisfy a given clock

period constraint. Combining this with the cost function, the complete ILP formulation

of 2-D retiming is: Minimize COST = £„6K R» under the constraints

1. Rv> F(wr(e)) for all edges v A? and all v € V (fanout constraint).

2. F(r(u) - r{v)) < F(w(e)) for every edge u4uofG (causality constraint).

3. F(r(u) - r(v)) < W(u,v) - a • a for all vertices u,v € V such that D(u,v) > c

(clock period constraint).

Example 5.2 Consider the 2DFG in Figure 5.6(a). Assume that the computation time

for each node is 1 time unit. The goal is to retime this 2DFG to minimize the memory

while achieving a clock period o/$(Gr) = 1 assuming an 8x8 data set and a processing

order specified bys = [l 2 }T and&=[-2 1]T. The maximum number of samples

on an access line is Hmax = 4 and a-a = 5, so F(x) = 20(s-x)+a-x. The ILP formulation

136

is to minimize COST = R1 + R2 + R3 + R4 subject to the fanout constraints, the causality

constraints, and the clock period constraints. The five fanout constraints are

Ri > 0 + F(r(2)-r(l))
Ri > 0 + F(r(3)-r(l))
Ä2 > 23 + F(r(4) - r(2))
A3 > 59 + F(r(4) - r(3))
A4 > 0 + F(r(l)-r(4)).

The five causality constraints are

F(r(l)-r(2)) < 0
F(r(l)-r(3)) < 0
F(r(2)-r(4)) < 23
F(r(3)-r(4)) < 59
F(r(4)-r(l)) < 0.

The values ofW(u,v) and D{u,v) are given in Table 5.3, and based on these values the

twelve clock period constraints are

F(r(l
F(r(l
F(r(l
F(r(2
F(r(2
F(r(2
F(r(3
F(r(3
F(r(3
F(r(4
F(r(4
F(r(4

-r(2)
-r(3)
-r(4)
-r(l)
-r(3)
-r(4)
-r(l)
-r(2)
-r(4)
-r(l)
-r(2)
-r(3)

< -5
< -5
< 18
< 18
< 18
< 18
< 54
< 54
< 54
< -5
< -5
< -5.

The retiming solution, found using the IIP solver GAMS [63], is r(l) = [0 1]T,

r(2) =[3 0]T, r(3) = [3 0]T, and r(4) = [2 0]T. The values of Ru R2, R3,

and R4 are 13, 5, 41, and 5, respectively, and the total cost is COST = 64. The retimed

2DFG is shown in Figure 5.6(b).

A downfall of the ILP 2-D retiming is its slow convergence time. From our experiences,

we have found that the ILP solver can take several minutes to find an optimal solution

for 2DFGs with as few as 12 nodes. The linear programming formulation in the next

137

(a) (b)

Figure 5.6: The (a) unretimed and (b) retimed 2DFGs referred to in Example 5.2.

Table 5.3: The values of W(u,v) and D(u,v) for Example 5.2.

W{u,v) 1 2 3 4
1 0 0 0 23
2 23 0 23 23
3 59 59 0 59
4 0 0 0 0

D(u,v) 1 2 3 4
1 1 2 2 3
2 3 1 4 2
3 3 4 1 2
4 2 3 3 1

section can be solved in polynomial time, resulting in significantly faster solution times

than ILP 2-D retiming.

5.4 Orthogonal 2-D Retiming

Orthogonal two-dimensional retiming partitions the 2-D retiming problem into two 1-

D retiming problems. These 1-D retiming problems, which we call s-retiming and a-

retiming, can be solved in polynomial time using techniques similar to those introduced

in [27]. By partitioning the 2-D retiming problem into two 1-D retiming problems, some

quality of the final solution may be sacrificed because the final solution is no longer

guaranteed to be globally optimal; however, our experience has shown that orthogonal

2-D retiming finds solutions that are comparable to the ILP solutions, and these solutions

138

axe found in much faster CPU times than the ILP solutions.

Simply stated, orthogonal 2-D retiming is performed by first performing s-retiming

and then performing a-retiming, where these two tasks are specified below:

• s-retiming: Project the 2-D retiming problem onto the s-vector and solve this 1-D

retiming problem to find the values of s • wr(e) for ee E.

• a-retiming: Project the 2-D retiming problem onto the a-vector and solve this 1-D

retiming problem to find the values of a • wr(e) for ee E.

The following subsections describe s-retiming and a-retiming along with the fanout model

used in orthogonal 2-D retiming. Throughout these subsections, the notations x^ and

x^a> are used to denote x • s and x • a, respectively.

5.4.1 Fanout Model

In the ILP formulation of 2-D retiming presented in Section 5.3, the fanout constraint is

used to ensure that the memory required by the output edges of a node is the maximum

memory required by any of the output edges of the node. In 1-D retiming [27], a "gadget"

is used to model the fanout node so the memory required by the output edges of the

node can be accurately modeled using a linear programming formulation. Figure 5.7

shows a similar gadget used so that the 2-D retiming problem can be modeled as two

linear programming problems.

The following four quantities are used in orthogonal 2-D retiming

wr%ax = max
l<t<k H

s)te)}
wmlx = , max

\max

139

wrjLx = , max
(s) i \ (s)

{4a)(ei)}.

Note that IO^L are known from the unretimed 2DFG, w^%ax and w$ax are known after

s-retiming has been performed, and Wr%ax are known after s-retiming and a-retiming

have been performed.

Figure 5.7(a) shows a fanout node with k output edges. The gadget in Figure 5.7(b)

is used to model the fanout node in a 2DFG. Each of the k edges e*, 1 < i < k, has

an associated weight w(e;) which is known from the 2DFG. The node ü is a dummy

node with zero computation time (d(u) = 0), and the edges e*, 1 < i < k, are dummy

edges used so the linear programming formulations used in orthogonal 2-D retiming can

accurately model the memory required by a node with more than one output edge. We

call the edges ej, 1 < i < k, auxiliary edges.

In addition to the weights w(ej), each of the edges ej has the associated quantities

a(ei) = \/k and

7(e«) : 1/m if wf'(ei) = w[%
0 otherwise

where m is the number of edges et- satisfying w[a\ei) = wf)nax after s-retiming has been

performed. Each auxiliary edge in Figure 5.7(b) has the associated quantities

w^(ei) = «7&L-«;<•>(*)

w («0 (ci) = w^l-w^iet)

and cr(ej) = 1/k and

0 otherwise

where m has the same definition as it has in 7(ej).

140

^-G) AHV,

UH-^H^) (^>^-{v2

•

(a) (b)

Figure 5.7: (a) A fanout node u. (b) A gadget used to model node u in the linear
programming formulations of orthogonal 2-D retiming.

5.4.2 s-Retiming

In orthogonal 2-D retiming, s-retiming affects the memory requirements of the retimed

2DFG more than a-retiming because s-retiming deals with entire delay lines while a-

retiming deals with single delays. As a result, s-retiming is performed first on the 2DFG,

and then a-retiming is performed.

In s-retiming the 2-D retiming problem is projected onto the scanning vector. Starting

with the 2-D retiming equation in (5.1), we can take the dot product of both sides of

the equation with the scanning vector s to get

s • wr(e) = s • w(e) + s • r(v) - s • r{u). (5.4)

Using the notation x^ to denote s • x, (5.4) can be written as

w^(e) = wW(e) + r^(v) - r^{u). (5.5)

The first causality constraint in Section 5.3.1 requires s • wr(e) > 0 for all e e E, which

can be rewritten as w{
r
s){e) > 0 for all e e E. Using this and (5.5) results in

tflW (c) + r(») („) _ r(«) (u) > o (5.6)

141

for all eeE. The second causality constraint in Section 5.3.1 and the clock period

constraint in Section 5.3.2 are enforced during a-retiming.

The cost function for s-retiming is the total number of access lines crossed by the

dependencies. This can be written as

COST = £ a(e)w^(e) = £ a(e)w^(e) + £ a(e)(r^(v) - r^(u)), (5.7)
eeE eeE eeE

where a(e) is the weight of an edge according to the fanout model in Section 5.4.1. The

formulation of s-retiming consists of minimizing the total number of access lines crossed

(i.e., minimize COST in (5.7)) while keeping u;[s)(e) > 0 for all e € E using (5.6).

Since Y,e£E o-(e)w^(e) is fixed, s-retiming can be stated as: Minimize

COST' = £ rW(„) (£ o(e) - £ e(e))

subject to rW(u) - r^{v) < u;W(e) for all e £ E.

Example 5.3 In this example, we perform s-retiming on the 2DFG in Figure 5.6(a)

assuming s = [1 2]T and & - [-2 1]T. Using the fanout model described in

Section 5.4-1, the 2DFG in Figure 5.6(a) is redrawn in Figure 5.8(a), where node 5 is

the dummy node associated with fanout node 1. The cost function is

COST' = rW(l)(l-l)+rW(2)Q-|)+rW(3)Q-|)

+r(s>(4)(2-l)+r(s>(5)(l-0)

= -r^(2) - r^(3) + r<*>(4) + r(s>(5).

The s-retiming problem is to minimize COST' subject to the following seven causality

142

constraints
rW(l) - -r<*)(2) < 0
rW(l) - -rW(3) < 0
rW(2) - -rW(4) < 1
rW(2) - -rW(5) < 0
rW(3) - _rW(4) < 3
rW(3) - -rW(5) < 0
r(»)(4) - -rW(l) < o,

and the solution found using the linear programming solver in GAMS [63] is r^(l) = 1,

r^(2) = 1, r<s)(3) = 3, r<s)(4) = 0, and r<*>(5) = 3. The result of s-retiming is shown

in Figure 5.8(b), where the numbers in parentheses represent wf\e). This solution is

combined with the results of a-retiming in Section 5.4-3 to obtain the complete orthogonal

2-D retiming solution.

(a) (b)

Figure 5.8: (a) The unretimed graph using the fanout model, (b) The result of s-retiming,
where the numbers in parentheses represent Wr (e).

The s-retiming formulation accurately models the memory requirements of a fanout

node. The following explanation uses the notation introduced in Section 5.4.1. Let the

path u -4 Vi % v, in Figure 5.7 be denoted as p*. The values of Wrfa) are made

as small as possible under the constraint w{3\ei) > 0. Therefore, the value of r(s)(ü)

will force wf'fa) = 0 for at least one edge which we call ij (i.e., wi-s\ej) = 0). Since

mini<j<fc |u;^(e,) j = Wr'(ej) and the retimed path weights w^(pi) are identical for

1 < i < k (they are all equal to w$ax + r^(u) - As\u)) because the unretimed path

143

weights w^(pi) are identical (they are all equal to t^L), we know w{rS){ej) = w{
r%,

This means that

wM(pj)=wP(ej)+wl°\ej) = W(°)nax.

The total cost of the k fanout edges is

£ o(e)wM(e) = £ o(e)v,M(e)
ee{ei,ei},l<i<k e€{ej,ei},l<i<fc

+]T <x(e)(rW(u)-rW(u))
eg{ei,ei},l<i<fc

V * / *i<<<* «i<i<fc

= «;W*+rW(ti)-rW(tz)

as desired.

5.4.3 a-Retiming

In a-retiming the 2-D retiming problem is projected onto the access vector. While s-

retiming takes the first causality constraint of Section 5.3.1 into account, a-retiming

takes the second causality constraint and the clock period constraint into account. Like

s-retiming, a-retiming is a linear programming formulation which can be solved in poly-

nomial time.

The constraints for a-retiming are the second causality constraint in Section 5.3.1 and

the clock period constraint. Starting with (5.1), we can take the dot product of both

sides of the equation with the access vector a to get

a • wr(e) = a • w(e) + a • r(u) - a • r(u). (5.8)

144

Using the notation x^ to denote a • x, (5.8) can be written as

4a)(e) = w(a)(e) + r^(v) - r<ffl>(u). (5.9) u£

The second causality constraint in Section 5.3.1 requires u;^(e) > 0 for all e 6 E such

that wf' (e) = 0. Using this in (5.9) results in

w(a) (e) + r(a) (v) - r(a) (u) > 0 (5.10)

for all e e E such that wf\e) = 0.

Clock period constraints must also be taken into account during a-retiming. A set of

constraints for a-retiming is formulated such that the clock period of the retimed graph

satisfies $(G>) < c for some desired clock period c. The following notations are used:

W(s)(u,v) = min{w(s)(p):uAt)}, u,v€V

W(s\u,v) = min{t4s)(p) :u4u), u,v eV

W(a)(u,v) = min{u;(a)(p) :u4u and w\.$)(p) = WJ!'
){u,v)}t u,v(=V

W$a\u,v) = min{u4a)(p) :uAt) and w^(p) = WJ:s){u,v)}, u,vGV

D(u,v) = max{d(p) : u A v and w{a){p) = W{a){u,v)}, u,v G V

Dr{u,v) = max{dr(p) :U4B and w^ip) = WJ:a){u,v)}, u,veV

The following two lemmas are useful for finding a-retiming conditions which satisfy a

given clock period constraint.

Lemma 5.4 Let r be a legal 2-D retiming which retimes G to Gr. The following hold:

5.4.1 Wla){u,v) = wW{u,v) + Aa\v) -Aa\u).

5.4.2 Dr(u,v) = D{u,v).

145

Proof:

(5.4.1)

W^(u,v) = mm{WW(p):u$v and w^(p) = W^(u,v)}

= mm{w^{p)+r^(v)-r^(u):u^v and w^(p) = W^(u,v)}

= r^{v)-r^{u) + mm{w^(p):uAv and w^ (p) = W^{u, v)}

= r(a){v)-rW(u) + W{aHu,v)

(5.4.2) We can use d(p) = dr{p) and the result from 5.4.1 to write

Dr(u,v) = max.{dr(p) : u -4 v

and w^ (p) + rW (v) - r W (u) = fW (u, v) + r<a> (v) - r<°> (u)}

= max{d(p) :uAv and w(a)(p) = W^a)(u,v)}

= D(u,v).D

Lemma 5.5 For a legal retiming Gr of G, the following are equivalent:

5.5.1 $(Gr) < c.

5.5.2 IfDr(u,v) > c and Wr
(s)(u,u) = 0, then w{a)(u,v) > a- a.

The proof of Lemma 5.5 is similar to the proof of Lemma 5.2. Lemmas 5.4 and 5.5

are used to prove the following.

Theorem 5.6 Given an s-retiming solution such that As\u) - r("\v) < u/s)(e) for

all edges u A v in E, the values r(°)(u) result in a legal 2-D retiming of G such that

$(Gr) < c if and only if

5.6.1 Aa){u) - r^(v) < w^{e) for all e € E such that w[s\e) = 0.

146

5.6.2 r^(u)-r^(v) < W(a\u,v)-&-8i for all vertices u,v e V such that D(u,v) > c

andWJ:s)(u,v) = 0.

Proof: 5.6.1 is simply the second causality constraint for a legal 2-D retiming. If 5.6.1

holds, then r is a legal retiming and by Lemma 5.5 the retimed graph Gr has clock

period $(G>) < c under the condition W$a\u, v) > a • a for all vertices u,v G V such

that DT(u, v) > c and Wr (u, v) = 0. Prom Lemma 5.4, we know Dr(u, v) = D(u, v) and

W$a)(u,v) = WW(u,v)+Aa\v)-rW(u). Therefore, Lemma 5.5 states that $(Gr) < c

is equivalent to 5.6.2. D

The cost of a-retiming is the weighted number of scanning lines crossed, given by

COST = £ 7(e)^a)(e) = £ j(e)w^(e) + £ 7(e)(r(o)(«) - r^(u)).
e€E ee£ e€E

Since T,eeEl/(e)w^aHe) is fixed, a-retiming can be stated as follows: Minimize

COST' = £ r<°) (v) (£ 7(e) - £ 7(e)

subject to

1. r(a)(u) - Aa\v) < wW(e) for all e € £ such that w{
r
s)(e) = 0.

2. r(ii) - r^{v) < W^{u,v) - a • a for all u,v € V such that D(u,v) > c and

Wr
(i)(u,u)=0.

Example 5.4 In this example, a-retiming is performed on the 2DFG in Figure 5.6(a).

Since a-retiming depends on the results of s-retiming, the results of s-retiming found in

Example 5.3 are used in this example. The 2DFG in Figure 5.6(a) is redrawn in Fig-

ure 5.9(a), where the values o/u/°)(e) and w^r
s\e) are explicitly shown. We assume that

the computation time of each node is 1 time unit, with the exception that the computation

147

Table 5.4: The values of Wr{u,v), W^{u,v), and D{u,v) for Example 5.4.

W^(u v) 1 2 3 4 5
1 0 0 2 0 2
2 1 0 3 0 2
3 1 1 0 0 0
4 1 1 3 0 3
5 - - - - 0

W(a\u,v) 1 2 3 4 5
1 0 0 0 3 0
2 3 0 3 3 0
3 -1 -1 0 -1 0
4 0 0 0 0 0
5 - - - - 0

D{u,v) 1 2 3 4 5
1 1 2 2 3 2
2 3 1 4 2 1
3 3 4 1 2 1
4 2 3 3 1 3
5 - - - - 0

time of the dummy node 5 is zero. The goal is to retime the 2DFG so it can be clocked

with a clock period of 1 time unit.

w<»= o
w<»=0

(a) (b)

Figure 5.9: (a) The 2DFG which is subjected to a-retiming in Example 5.4. (b) The
results of s-retiming and a-retiming for the 2DFG in Figure 5.6(a). These results are
found in Examples 5.3 and 5.4.

For fanout node 1, w$ax = 0, Wrtmax = 2, Wmlx = 0, and m = 1. The values of

Wr(u,v), W^a\u,v), and D(u,v) are given in Table 5.4-

148

The a-retiming formulation is to minimize

COST' = r(a)(l)(l-l)+r(a>(2)(0-l)+r(a)(3)(l-2)

+r(°)(4)(2-l)+r(a)(5)(l-0)

= -rW (2) - rW (3) + r<a> (4) + r<a> (5)

subject to
r(«)(l)

r(a)(2)
r(a)(3)_r(a

r(a)(3)_r(a

r(a)(l)_r(a

r(«)(l)_r(«:

r(a)(2) .(«:

>(2
)(4
)(4
)(5
)(2
)(4

)(4

)(4

< 0
< 3
< -1
< 0
< -5
< -2
< -2
< -6. r(a)(3)_r(

The a-retiming solution found using the linear programming solver in GAMS [63] is

r(°)(l) = -7, r(fl)(2) = -2, r<a)(3) = -6, r^(4) = 0, and r^(5) = -6. The 2DFG is

drawn in Figure 5.9(b) with the results of s-retiming (from Example 5.3) and a-retiming

shown.

We can show that the a-retiming formulation accurately models the memory require-

ments of a fanout node when the practical restriction

|<4a>(e)|<tfmai(a-a)/2.

is enforced. Assume that F(wr(e)) is used to estimate the memory required by the

edge e.

S*)< ,.(*) Lemma 5.7 IfuA"(ei) < wY\ej), then F(wr(ei)) < F(wr(ej)).

Proof:

u;W(ei)<t4*>(Ci) w. i'He^ + lKw^iej)

149

=► Hmax{& ■ &)w[s\ei) + Hmax(a ■ a) < ffmax(a • a)wi'\ej)

=► Hmax{a ■ a)u;W(ei) + Hmax{a • a)/2 < Hmax{& ■ &)w<f\ej)

-Hmax(8i-&)/2 (5.11)

Using w[a)(ei) < #mai(a ■ a)/2 and io£a)(ej) > -#max(a • a)/2, we can write the

inequalities

tfmai(a • a)4s)(ei) + ti^fo) < tfmax(a • aju^te) + Hmax{a • a)/2

and

Hmax(& ■ B-M'^ej) + wP(ej) > tfmoi(a ■ a)tüW(ej) - Hmax(a ■ a)/2.

Combining these with the inequality in (5.11) results in

Hmax(8L ■ a)u4'>fe) + w^(ei) < tfmai(a • 8i)w^(ej) + w^(ej)

=► F(wr(e{)) < F(wr{ej)).n

The following explanation uses the notation introduced in Section 5.4.1. From Lemma

5.7, we know that for a node u with k output edges, the edge ej which satisfies F(wr(ej)) >

F{™r(ei)), 1 < i < k, must obey w{s\ej) = w^%ax after s-retiming. Given that

Wr$ (ej) = w)-%ax, from the definition of F(-) we can see that the edge ej which sat-

isfies F(wr(ej-)) > F(wr(ei)), 1 < i < k, also satisfies w[a\ej) = v$Lx. To summarize,

the edge ej which satisfies F(wr{ej)) > F(wr(ej)), 1 < i < k, satisfies w{
r
s)(ej) = w{

r%ax

and wf\ej) = w)r%ax.

The goal now is to show that the cost of the fanout node, given by

£ 7(e)«4a)(e),
e6{ei,ei},l<i<fc

is equal to w^max- Let the path u -^ V{ Q ü in Figure 5.7(b) be denoted as pj. The only

auxiliary edges which affect the cost function are those with tu£s)(ej) = 0 because 7(0*) =

150

0 for any auxiliary edge with w{
r
s)(ei) > 0. For the auxiliary edges with tujfyej) = 0,

the values of w{
r
a'(ei) are made as small as possible under the constraint w?\ei) > 0.

Therefore, the value of r^(u) will force w[a\ei) = 0 for at least one edge which satisfies

w{
r
s)(ei) = 0. Let this edge with wia){ii) = 0 and wPfa) = 0 be the edge e,-. Since

min UaHei)\=wM(ej)

and the retimed path weights w{
r
a)(pi) are identical for 1 < i < k (they are all equal to

Wmax + r(a\ü) -r(°)(u)) because the unretimed path weights tu(a)(pi) are identical (they

are all equal to tu&L), we know w[a\ej) = w[%ax. This means that

wlaHpj) = 4a)(ej)+w(aHej)=wi%ax.

The total cost of the k fanout edges is

£ i(e)wM(e) = £ 7(c)w(a)(e)
ee{ei,ei},l<i<k ee{e;,ej},l<i</c

+ £ 7(e)(r(a)(f)-r(a)(u))
e€{e;,ej},l<i<fc

= Ä + r(a)(ü)-rW(u)

= 4aHpj)

= w^

as desired.

5.4.4 Combining the results of s-retiming and a-retiming

The results of s-retiming and a-retiming must be combined to get the retimed 2DFG.

From w[s){e) = wr(e) • s and w[a\e) = wr(e) • a, we can write

w[s\e)
4a)(e)

sT

wr(e),

151

so wr(e) can be computed using

wr(e) =
T -1

aJ
w{

r
s)(e)

(5.12)

Example 5.5 For the retiming performed in Examples 5.3 and 5.4, the processing order

was specified by s = [1 2]T and& = [-2 1 }T. Using these values in (5.12) gives

wP(e) = \
1 -2
2 1

w[s){e)

L ^a)(e)

in Applying this to the results shown in Figure 5.9(b) gives the retimed 2DFG shown i

Figure 5.10, which is the result of applying orthogonal 2-D retiming to the 2DFG in

Figure 5.6(a).

Figure 5.10: The result of performing orthogonal 2-D retiming on the 2DFG in Fig-
ure 5.6(a).

A problem with orthogonal 2-D retiming is that s-retiming and a-retiming may give

incompatible results. To show this, we consider an alternative solution to a-retiming in

Example 5.4. The solution r(l) = -8, r<a>(2) = -2, r<a)(3) = -6, r<a>(4) = 0, and

r» (5) = -6 has the same cost and satisfies all of the a-retiming constraints; however,

this new a-retiming solution is not compatible with the s-retiming solution found in

152

" 1 -2 '
2 1

1 '
-8

= 17/5 "
-6/5

Example 5.3. To see this, note that for the edge 4 4 1, we found wis)(e) = 1 in

Example 5.3 and our new solution to a-retiming gives wia\e) = 0 + (-8) - 0 = -8, so

the dependency for this edge in the retimed 2DFG is

w(e) = I

Since this dependence vector has non-integer elements, the retimed 2DFG is not practical.

The following section introduces a variation of orthogonal 2-D retiming which guarantees

that the retimed dependencies have integer elements for a common set of processing

orders.

5.5 Integer Orthogonal 2-D Retiming

Integer orthogonal 2-D retiming can be used to guarantee that the edge dependence

1 k

or s = y k 1 J , where A; is a nonnegative integer. Similar to orthogonal 2-D retim-

ing, s-retiming and a-retiming are used in integer orthogonal retiming, but a-retiming

is manipulated in integer orthogonal retiming so the dependencies are guaranteed to

have integer elements. Since integer orthogonal retiming consists of solving two linear

programming problems, it can be solved in polynomial time.

5.5.1 a-retiming for the sx = 1 Case

The first constraint for a-retiming is r^(u) - Aa)(v) < u/a)(e) for all edges u A v in E

such that w[s'(e) = 0. This can be written as

rx{u)
ry(u)

rx(v)
ry{v)

<w^(e) (5.13)

for all e e E such that io£s)(e) = 0. From r^(u) = r(u) -s, we know rx(u)sx + ry(u)sy =

r^{u), which implies rx(u) = As\u) -ry(u)sy because sx = 1 is assumed. Substituting

153

this expression for rx{u) into (5.13) gives

rWV"K])-as»w<*>- w
Assuming that a and s are related by ax = -sy and ay = sx = 1, (5.14) can be written

as

ris){u)-ry(u)sy

ry{u)

sy(r^(u) - ry(u)sy - r^(v) + ry(v)sy) + (ry(u) - ry(v)) < w^(e). (5.15)

Since the first constraint for a-retiming applies to the edges with w(
r
a)(e) = 0, this implies

w(*)(e) = rW(«) -rW(ü), so we can replace r«(u) -r(«)(t») with w^(e) in (5.15) to get

-syw^(e) + (ry(u) - ry{v))(l + s2
y) < w^(e).

Expanding u/')(e) = sxwx(e) + sywy(e) and u/a)(e) = -sywx(e) + sxwy(e) results in

sy{sxwx{e) + syWy(e)) + (ry(u) - ry(v))(l + s2
y) < -Sywx(e) + sxwy(e),

which can be rewritten using sx = 1 as

-sywx(e) - s2
yWy{e) + (ry(u) - ry{v))(l + s2

y) < -sywx(e) + wy(e)

=* (rv(u) - ry(v))(l + s2
y) < wy(e){\ + s2

y)

=* ry(u)-ry(v) <wy(e).

Therefore, the first constraint for a-retiming when s = [1 k]T is ry{u)-ry{v) < wy(e)

for all e G E such that w[a) = 0.

The second constraint for a-retiming is r^(u) - r^(v) < W^(u,v) - a • a for all

u,veV such that D{u,v) > c and Wr
{s){u,v) = 0. Using the left-hand-side of (5.15) to

substitute for r^(u) - Aa\v), this can be written as

sy(r^(u) - rM(v)) + (ry(u) - ry(v))(l + aJ) < W^(u, v) - a • a

154

for all u,v(=V such that D(u,v) > c and Wr
(s)(u,") = 0. Solving for ry{u) - ry(v), the

second constraint for a-retiming can be written as

(u) _ < WW(ti,»,)-a.a + J|>(rW(u)-rW(t,))

for all u,w € V such that £(«,«) > c and W$s){u,v) = 0. The left-hand side of this

inequality must be an integer, but the right-hand side is not guaranteed to be an integer

(this occurs in Example 5.6), so we can rewrite this inequality as

W^a\u,v)-&-a + Sy(r^(u) - rW(u))
l + sl

ry{u) - ry(v) <

for all u,v € V such that D(u,v) > c and WJ>s)(u,v) = 0.

The cost function for a-retiming is

COST' = £ rM(t,)(£ 7(e) - £ 7(e)

If we let A;« = (E?4V 7(e) - Y,v$7 7(e)), then the cost can be written as

COST' = Y,(-syrx(v)+ry(v))kv

= E(~s!/(r(s)(w) -ry(v)sy) +ry{v))kv
v€V

= Y,(-syr{s)(v))kv + J2ry(v)(l+s2
y)kv.

During a-retiming, T,veV{-syr^(v))kv and (1 + s£) are constant values, so minimizing

COST' is equivalent to minimizing

COST" = £ ry(v) [£ 7(e) - £ 7(e)) •

Summarizing, the a-retiming formulation for the case when s = [1 k 1 is given

by: Minimize

COST" = £ ry(t,) [£ 7(e) - £ 7(e)V

subject to

155

1. ry(u) - ry(v) < Wy{e) for all e G E such that w[a\e) = 0

2. ry(u)-ry(v) <

As)

vWa>(u,t>)-a-a+sv(rf
J>(u)-rW(u))

1 4- «■* 1+ai for all w, v G V such that Z)(u, u) >

cand WP
w(u,t;) = 0.

After solving for the values of ry(v), the values of rx(v) can be computed using

rx(v) = M{v) - ry(v)sy.

Example 5.6 In this example, we use the integer orthogonal retiming formulation for

Ik to retime the 2DFG shown in Figure 5.11(a) assuming the case where s =

s =] 1 1 and a = -1 1 The desired clock period is 2 units of time, and

addition and multiplication are assumed to take 1 and 2 units of time, respectively. The

result of s-retiming is shown in Figure 5.11(b), where the numbers on the edges are the

values ofu)r(e).

Figure 5.11(c) shows the 2DFG in Figure 5.11(a) with the auxiliary edges included to

properly model the fanout of node 1. Since the integer orthogonal retiming formulation

uses the values of wy(e) for all e e E, the values of wy(e) on the auxiliary edges in

Figure 5.11(c) are computed using

u>(3Xe)
vjW(e)

w(e) =

Then a-retiming consists of minimizing

COST" = r(fl)(2) + r» (3) - r<a>(4) - r(a)(5) - r<a>(6) + r<fl>(7)

156

x(n,,n2) y(ni,n2)

(a) (b)

"(n,,!^) y(nr.n2)

(d)

Figure 5.11: (a) The 2DFG which is retimed in Example 5.6. (b) The result of s-retiming.
(c) The 2DFG showing the dependencies on the auxiliary edges, (d) The retimed 2DFG
which achieves the desired clock period of 2 time units.

subject to the causality constraints

r,(l) - -ry(4) < 1
r,(l) - -r»(5) < 0
r,(l) - -r„(6) < 1
r„(3) - -r„(2) < 0
r»(4) - -r»(2) < 0
r„(4) - -r„(7) < 0
r»(5) - - r»(3) < 0
r»(5) - -r„(7) < 1
r»(6) - -r»(7) < 0

157

Table 5.5: The values of Wr
w(u,t;), W^(u,v), and D(u,v) for Example 5.6.

Wls)(u,v) 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0
2 1 0 1 1 1 1 1
3 1 0 0 1 1 1 1
4 1 0 1 0 1 1 0
5 1 0 0 1 0 1 0
6 2 1 1 2 2 0 0
7 0

WW(u,v) 1 2 3 4 5 6 7
1 0 1 -1 1 -1 0 1
2 0 0 -1 1 -1 0 1
3 0 0 0 1 -1 0 1
4 0 0 -1 0 -1 0 0
5 0 0 0 1 0 0 2
6 0 0 0 1 -1 0 1
7 0

D(u,v) 1 2 3 4 5 6 7
1 1 4 4 3 3 3 3
2 2 1 5 4 4 4 4
3 3 2 1 5 5 5 5
4 4 3 7 2 6 6 2
5 5 4 3 7 2 7 2
6 5 4 3 7 7 2 2
7 0

and the clock period constraints (which use the information in Table 5.5)

r„(l) - -ry(2) < 0
r»(l) - -r„(3) < -1
r,(l) - -r„(4) < 0
r„(l) - -r„(5) < -1
r„(l) - - r„(6) < 0
*V(D " "^(7) < -1
r„(4) - -r„(2) < -1
r»(5) - -r„(2) < -1
r»(5) - -r„(3) < -1

The retimed 2DFG is shown in Figure 5.11(d).

5.5.2 a-retiming for the sy = 1 Case

Using the same techniques as those used in Section 5.5.1 to manipulate a-retiming, we

can find that a-retiming has the following formulation when s = k 1

158

Minimize

subject to

COST" = £(-rx(t;)) (£ 7(e) - £ 7(c)

1. rz(u) - rx(u) > w^e) for all e € £ such that io£s)(e) = 0.

2. rx(u)-rx(v) > [-^M+a^rMM-rWf^j forall^ G K such that £(u, u) >

candWr
(s)(u,u)=0.

After solving for the values of rx(v), the values of ry(v) can be computed using

ry(v) = A"\v) - rx(v)sx.

5.6 Comparisons

In this section we compare the results of using our ILP 2-D retiming technique and

our orthogonal 2-D retiming technique with the previously published chained [34] and

schedule-based [33] 2-D retiming approaches.

Comparisons for the 2DFGs in Figure 5.6(a) and Figure 5.13(a) are given in Table 5.6

and Table 5.7, respectively. The results in these tables assume that the computation time

of each node is one time unit, the desired clock period is one time unit, and the 2DFG

operates on a 256 x 256 data set. Because the number of registers required by the retimed

2DFG is not the same for each of the 2562 iterations, the number of registers required by

the retimed 2DFGs is determined by computing the memory required for each of the 2562

iterations and taking the maximum of these values. To demonstrate this, the memory

requirement for the 2DFG in Figure 5.12(a) is computed assuming a 4 x 4 data set and

processing order specified by s = [1 1]r and a = [-1 1]T. At the beginning

of iteration [1 2]T, the four samples which must be stored due to the dependency

159

[1 0]T are indicated in Figure 5.12(b) with an "x" and the one sample which must

be stored due to the dependency [-1 1]T is indicated with an "o". Therefore, the

iteration [1 2]T requires that 5 samples are stored. The reader can verify that the

iteration [1 1]T requires that 4 samples are stored, the iteration [2 2]T requires

that 5 samples are stored. The maximum number of samples that must be stored for

any iteration is 5, so this 2DFG requires 5 registers.

(a) (b)

Figure 5.12: (a) A 2DFG. (b) The samples which must be stored.

Because the 2DFG in Figure 5.6(a) is small, the ILP 2-D retiming technique described

in Section 5.3 was used to obtain the results in Table 5.6. Note that the minimum length

scanning vector feasible for this DFG with schedule-based retiming is s = [1 4]r. Due

to the relatively large size of the 2DFG in Figure 5.13(a), the orthogonal 2-D retiming

technique in Section 5.4 was used to obtain the results in Table 5.7. Since orthogonal 2-D

retiming resulted in dependence vectors with integer elements, it was not necessary to use

integer orthogonal retiming for this 2DFG. Figure 5.6(b) shows the retimed version of the

2DFG in Figure 5.6(a) for s = [1 2)T and a = [-2 1]T, and Figure 5.13(b) shows

the retimed version of the 2DFG in Figure 5.13(a) for s = [1 1]T and a = [1 1]T.

From Tables 5.6 and 5.7, we can observe that the "schedule-based" retiming technique

in [33] does not find a solution for any of the processing orders chosen. This is because

our techniques have less stringent (but still sufficient) causality constraints than the

160

Table 5.6: Memory requirements after retiming the circuit in Figure 5.6(a) assuming a
256 x 256 data set.

scanning
vector

retiming
technique

number of
registers

s = [0 1]T
ours 258

chained 510
schedule-based no solution

8=[1 2]T
ours 385

chained 511
schedule-based no solution

Table 5.7: Memory requirements after retiming the circuit in Figure 5.13(a) assuming a
256 x 256 data set.

scanning
vector

retiming
technique

number of
registers

s = [l 2]T
ours 778

chained 1794
schedule-based no solution

S = [1 1]T
ours 1032

chained 2048
schedule-based no solution

s=[2 If
ours 780

chained 1288
schedule-based no solution

161

schedule-based technique. Thus, our techniques are compatible with more processing

orders. We can conclude that our techniques offer more flexibility than the schedule-

based retiming technique because our techniques are compatible with more processing

orders.

We can also conclude from Tables 5.6 and 5.7 that our techniques result in solutions

which require considerably less memory than the chained retiming technique in [34].

This is because our formulations are not sensitive to the memory requirements of the

unretimed 2DFG, while the results of chained retiming are dependent on the memory

requirements of the unretimed 2DFG.

5.7 Conclusions

In this chapter we have presented two techniques for retiming 2DFGs. These two tech-

niques attempt to minimize the amount of memory required to implement the 2DFGs

under a given clock period constraint. The ILP 2-D retiming technique solves the entire

2-D retiming problem as a whole but requires long run times to solve. As a result, this

technique should be used only for small 2DFGs. Orthogonal 2-D retiming runs faster

than the ILP technique but occasionally gives incompatible results between s-retiming

and a-retiming. Therefore, orthogonal 2-D retiming should be used when the 2DFG is

too large to solve using ILP 2-D retiming, and integer orthogonal 2-D retiming should be

used when orthogonal 2-D retiming gives incompatible results between s-retiming and

a-retiming.

Our comparisons have shown that the techniques presented in this chapter give con-

siderably better results than previously published techniques. In fact, our techniques can

result in retimed 2DFGs which require less than 50% of the memory hardware required

162

by the technique in [34]. Our techniques perform better than the technique in [33] be-

cause our formulations have less stringent (but still sufficient) causality constraints, and

they perform better than chained retiming in [34] because our formulations are not sen-

sitive to the memory requirements of the unretimed 2DFG, while the results of chained

retiming are dependent on the memory requirements of the unretimed 2DFG.

Future research should be directed toward studying the interactions between inter-

iteration parallelism and inter-operation parallelism and toward rinding algorithms for

retiming data-flow graphs which operate on signals which have dimensionality greater

than two for applications such as video processing. Register minimization in 2-D retiming

which includes the use of scanning order conversion requires further study. Retiming for

folding for the one-dimensional case has been studied in [28]. Two-dimensional retiming

for folding of 2DFGs is another topic of further research.

163

-9-
■J]

[J]

LsJfl

!L*JJ]

0

-©-

<■>

:-.']

["'1 h'l [fl

(b)

Figure 5.13: (a) A 2-D IIR filter, (b) A retimed version of the filter.

164

Chapter 6

Conclusions and Future Research
Directions

6.1 Conclusions

We have considered several formal techniques for mapping DSP algorithms to VLSI

architectures. The salient features of these techniques are that they increase the un-

derstanding of the interaction between algorithms and architectures, and they provide

methods for designing new and improved architectures for a wide variety of DSP algo-

rithms.

A new formulation of scheduling was presented in Chapter 2. Using this formula-

tion, we showed that retiming is a special case of scheduling, and we described the

interaction between retiming and scheduling in a mathematical framework. Algorithms

were developed for exhaustively generating all retiming and scheduling solutions for a

strongly connected DFG. By carefully choosing the examples in this chapter, we have

given scheduling solutions for many niters which are of interest to the high-level synthesis

community. This community should find the scheduling results for the biquad filter and

the fifth order wave digital elliptic filter to be of particular interest.

165

New expressions were introduced in Chapter 3 for computing the minimum number

of registers required to implement a statically scheduled DFG. Two cases are consid-

ered, namely, the cases where retiming is and is not allowed after the DFG has been

scheduled. These results should be useful in CAD tools used to design memory-efficient

architectures.

The multirate folding transformation was developed in Chapter 4. Within the scope

of multirate folding, the problems of retiming for multirate folding and register minimiza-

tion in (multirate) folded architectures were also considered. Together, the formulations

of multirate folding, retiming for multirate folding, and register minimization provide a

new technique for designing single-rate VLSI architectures for multirate DSP algorithms,

such as the discrete wavelet transform.

In Chapter 5, two techniques for 2-D retiming were presented, namely, ILP 2-D

retiming and orthogonal 2-D retiming. These techniques can reduce the memory usage

in 2-D DSP implementations by over 50%. This is of particular importance due to

the recent high demand for low cost and low power implementations of 2-D DSP for

multimedia applications.

6.2 Future Research Directions

The work presented in this thesis provides the foundation for several interesting future

research projects. In the area of exhaustive scheduling and retiming, it would be in-

teresting to include unfolding [62] in the formulation. Since a formulation is given in

Chapter 2 for folding, it seems natural that a similar formulation can be derived for

unfolding, since unfolding is essentially the inverse operation of folding. A formulation

which includes retiming, folding, and unfolding would be interesting from a theoretical

166

point of view as well as a practical point of view.

In the area of register minimization, we have solved the problem of computing the

number of registers required by a scheduled DSP algorithm, but the problem of allo-

cating data to these registers is an open problem. Although several excellent heuristic

techniques have been suggested (e.g., in [51], [52], and [53]), the topic of memory man-

agement will be an open problem for many years due to the large percentage of chip area

which must be dedicated to memory.

In the area of multirate synthesis, the topics of retiming [35] and scheduling [55]

for multirate DFGs are still under examination. The study of these topics and the

development of formulations for retiming and scheduling similar to those in Chapter 2

(but for the multirate case) would be both useful and interesting.

In the area of multi-dimensional retiming, 2-D retiming with non-linear scanning

orders, such as the Dovetail scan [72], would be an interesting extension. Future research

should also take into account the cost of scan conversion buffers, i.e., the buffers required

to convert the data to and from the traditional line-by-line scanning order. Another area

of future research is to extend the 2-D retiming formulations to higher dimensions. This

problem, which is by no means trivial, has applications in the very popular area of digital

video processing.

Finally, one research topic, which we have not been able to address, includes most of

the topics covered in this thesis. This topic is to combine 2-D retiming, multirate folding,

and register minimization to develop a multirate/multi-dimensional folding transforma-

tion. Such a transformation would be useful for designing new two-dimensional discrete

wavelet transform architectures [73] [74].

167

Bibliography

[1] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems Per-
spective. Addison-Wesley, second ed., 1993.

[2] W. Wolf, Modern VLSI Design: A Systems Approach. Englewood Cliffs, NJ: Pren-
tice Hall, second ed., 1994.

[3] A. V. Oppenheim and R. W. Schäfer, Discrete-Time Signal Processing. Englewood
Cliffs, NJ: Prentice Hall, 1989.

[4] J. S. Lim, Two-Dimensional Signal and Image Processing. Englewood Cliffs, NJ:
Prentice Hall, 1990.

[5] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, NJ:
Prentice Hall, 1993.

[6] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice Hall, second ed.,
1991.

[7] M. C. McFarland, A. C. Parker, and R. Composano, "The high-level synthesis of
digital systems," Proceedings of the IEEE, pp. 301-318, February 1990.

[8] N. Park and A. C. Parker, "Sehwa: A software package for synthesis of pipelines
from behavioral specifications," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 7, pp. 356-370, March 1988.

[9] T.-F. Lee et al., "An effective methodology for functional pipelining," in Proceedings
of the Int. Conf. on Computer Aided Design, pp. 230-233, November 1992.

[10] P. Lippens et al, "PHIDEO: A silicon compiler for high speed algorithms," in Pro-
ceedings of the European Conference on Design Automation, (Amsterdam), pp. 436-
441, February 1991.

[11] M. Potkonjak and J. Rabaey, "Retiming for scheduling," in VLSI Signal Processing
IV, pp. 23-32, November 1990.

[12] L.-F. Chao, A. LaPaugh, and E. H. Sha, "Rotation scheduling: A loop pipelining
algorithm," in Proceedings of the 30th Design Automation Conference, pp. 566-572,
June 1993.

[13] M. Potkonjak and J. Rabaey, "Pipelining: Just another transformation," in Pro-
ceedings of 1994 IEEE International Conference on Application-Specific Array Pro-
cessors, (Oakland, CA), pp. 163-177, August 1992.

168

[14] C. H. Gebotys and M. I. Elmasry, "Global optimization approach for architectural
synthesis," IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 12, pp. 1266-1278, September 1993.

[15] S. M. Heemstra de Groot, S. H. Gerez, and 0. E. Herrmann, "Range chart guided
iterative data-flow graph scheduling," IEEE Transactions on Circuits and Systems-
I: Fundamental Theory and Applications, vol. 39, pp. 351-364, May 1992.

[16] P. G. Paulin and J. P. Knight, "Force-directed scheduling for the behavioral synthe-
sis of ASIC's," IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 8, pp. 661-679, June 1989.

[17] H. De Man et al., "Cathedral II: A silicon compiler for digital signal processing,"
IEEE Design and Test Magazine, pp. 13-25, December 1986.

[18] H. De Man et al., "Architecture driven synthesis techniques for VLSI implementa-
tion of DSP algorithms," Proceedings of the IEEE, pp. 319-335, February 1990.

[19] J. Vanhoof, K. Van Rompaey, I. Bolsens, G. Goossens, and H. De Man, High-Level
Synthesis for Real-Time Digital Signal Processing. Kluwer Academic, 1993.

[20] I.-C. Park and C.-M. Kyung, "FAMOS: An efficient scheduling algorithm for high-
level synthesis," IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 12, pp. 1437-1448, October 1993.

[21] R. I. Hartley and J. R. Jasica, "Behavioral to structural translation in a bit-serial
silicon compiler," IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 7, pp. 877-886, August 1988.

[22] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, "A formal approach to the scheduling
problem in high-level synthesis," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 10, pp. 464-475, April 1991.

[23] C.-T. Hwang, Y.-C. Hsu, and Y.-L. Lin, "PLS: A scheduler for pipeline synthesis,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 12, pp. 1279-1286, September 1993.

[24] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, "Fast prototyping of data-path
intensive architectures," IEEE Design and Test of Computers, pp. 40-51, June 1991.

[25] M. Potkonjak and J. Rabaey, "Fast implementation of recursive programs using
transformations," in Proc. of IEEE Int. Conf on Acoustics, Speech, and Signal Pro-
cessing, vol. V, (San Francisco, CA), pp. 569-572, March 1992.

[26] C.-Y. Wang and K. K. Parhi, "High-level DSP synthesis using concurrent trans-
formations, scheduling, and allocation," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 14, pp. 274-295, March 1995.

[27] C. Leiserson, F. Rose, and J. Saxe, "Optimizing synchronous circuitry by retiming,"
Third Caltech Conference on VLSI, pp. 87-116, 1983.

[28] K. K. Parhi, C.-Y. Wang, and A. P. Brown, "Synthesis of control circuits in folded
pipelined DSP architectures," IEEE Journal of Solid-State Circuits, vol. 27, pp. 29-
43, January 1992.

169

[29] K. K. Parhi, "Calculation of minimum number of registers in arbitrary life time
chart," IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal
Processing, vol. 41, pp. 434-436, June 1994.

[30] S. Simon, E. Bernard, M. Sauer, and J. Nossek, "A new retiming algorithm for
circuit design," in Proceedings of IEEE ISC AS, (London, England), May 1994.

[31] T. C. Denk and K. K. Parhi, "A unified framework for characterizing retiming
and scheduling solutions," in Proceedings of IEEE ISC AS, vol. 4, (Atlanta, GA),
pp. 568-571, May 1996.

[32] T. C. Denk, M. Majumdar, and K. K. Parhi, "Two-dimensional retiming with low
memory requirements," in Proceedings of IEEE ICASSP, vol. 6, (Atlanta, GA),
pp. 3330-3333, May 1996.

[33] N. L. Passos, E. H.-M. Sha, and S. C. Bass, "Optimizing DSP flow graphs via
schedule-based multidimensional retiming," IEEE Transactions on Signal Process-
ing, vol. 44, pp. 150-155, January 1996.

[34] N. Passos and E. H.-M. Sha, "Full parallelism in uniform nested loops using multi-
dimensional retiming," in Proc. Int'l Conf. on Parallel Processing, 1994.

[35] V. Zivojnovic and R. Schoenen, "On retiming of multirate DSP algorithms," in Proc.
of IEEE Int. Conf on Acoustics, Speech, and Signal Processing, vol. 6, (Atlanta,
GA), pp. 3310-3313, May 1996.

[36] T. C. Denk and K. K. Parhi, "Systematic design of architectures for M-ary tree-
structured filter banks," in VLSI Signal Processing, VIII (T. Nishitani and K. Parhi,
eds.), pp. 157-166, IEEE Press, October 1995.

[37] K. Ito and K. K. Parhi, "Register minimization in cost-optimal synthesis of DSP
architectures," in VLSI Signal Processing, VIII (T. Nishitani and K. Parhi, eds.),
pp. 207-216, IEEE Press, October 1995.

[38] L. E. Lucke and K. K. Parhi, "Data-flow transformations for critical path time
reduction in high-level DSP synthesis," IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 12, pp. 1063-1068, July 1993.

[39] C. H. Gebotys and M. I. Elmasry, "Optimal synthesis of high-performance architec-
tures," IEEE Journal of Solid-State Circuits, vol. 27, pp. 389-397, March 1992.

[40] C. H. Gebotys, "Synthesizing embedded speed optimized architectures," IEEE Jour-
nal of Solid-State Circuits, vol. 28, pp. 242-252, March 1993.

[41] I. Daubechies, "Orthonormal bases of compactly supported wavelets," Comm. in
Pure and Applied Math., vol. 41, pp. 909-996, November 1988.

[42] S. G. Mallat, "Multifrequency channel decompositions of images and wavelet mod-
els," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37,
pp. 2091-2110, December 1989.

[43] O. Rioul and M. Vetterli, "Wavelets and signal processing," IEEE Signal Processing
Magazine, pp. 14-38, October 1991.

170

[44] G. Strang, "Wavelets and dilation equations: A brief introduction," SIAM Rev.,
vol. 31, pp. 614-627, December 1989.

[45] R. Coifman and M. Wickerhauser, "Entropy-based algorithms for best basis se-
lection," IEEE Transactions on Information Theory, vol. 38, pp. 713-718, March
1992.

[46] T. C. Denk and K. K. Parhi, "Lower bounds on memory requirements for statically
scheduled DSP programs," to appear in Journal of VLSI Signal Processing, June
1996.

[47] P. Dewilde, E. Deprettere, and R. Nouta, "Parallel and pipelined VLSI implementa-
tion of signal processing algorithms," in VLSI and Modern Signal Processing (Kung,
Whitehouse, and Kailath, eds.), ch. 15, pp. 257-276, Prentice Hall, 1985.

[48] J. Monteiro, S. Devadas, and A. Ghosh, "Retiming sequential circuits for low
power," in Proceedings of IEEE Int. Conf. on Computer Aided Design, pp. 398-
402, 1993.

[49] D. Johnson and J. Johnson, Graph Theory With Engineering Applications. New
York, NY: The Ronald Press Company, 1972.

[50] R. I. Hartley and K. K. Parhi, Digit-Serial Computation. Kluwer Academic, 1995.

[51] K. K. Parhi, "Systematic synthesis of DSP data format converters using life-time
analysis and forward-backward register allocation," IEEE Transactions on Circuits
and Systems-II: Analog and Digital Signal Processing, vol. 39, pp. 423-440, July
1992.

[52] L. Stok and J. Jess, "Foreground memory management in data path synthesis,"
Interational Journal of Circuit Theory and Applications, vol. 20, pp. 235-255, 1992.

[53] J. Bae, V. Prasanna, and H. Park, "Synthesis of a class of data format convert-
ers with specified delays," in Proceedings of 1994 IEEE International Conference
on Application-Specific Array Processors, (San Francisco, CA), pp. 283-294, IEEE
Computer Society Press, August 1994.

[54] F. Kurdahi and A. Parker, "REAL: A program for register allocation," in Proc.
24th ACM/IEEE Design Automation Conf., pp. 210-215, June 1987.

[55] E. A. Lee and D. G. Messerschmitt, "Static scheduling of synchronous data flow
programs for digital signal processing," IEEE Trans. Computer, vol. C-36, pp. 24-
35, January 1987.

[56] G. Gao, R. Govindarajan, and P. Panangaden, "Well-behaved dataflow programs
for DSP computation," in Proceedings of IEEE ICASSP, vol. V, (San Francisco,
CA), pp. 561-564, March 1992.

[57] S. S. Bhattacharyya and E. A. Lee, "Memory management for dataflow program-
ming of multirate signal processing algorithms," IEEE Transactions on Signal Pro-
cessing, vol. 42, pp. 1190-1201, May 1994.

[58] R. Govindarajan, G. Gao, and P. Desai, "Minimizing memory requirements in rate-
optimal schedules," in Proceedings of IEEE Int. Conf. on Application-Specific Array
Processors, (San Francisco, CA), pp. 75-86, August 1994.

171

[59] M. Renfors and Y. Neuvo, "Fast multiprocessor realizations of digital filters," in
Proceedings of IEEE ICASSP, pp. 916-919, 1980.

[60] M. Renfors and Y. Neuvo, "The maximum sampling rate of digital filters under
hardware speed constraints," IEEE Transactions on Circuits and Systems, vol. CAS-
28, pp. 196-202, March 1981.

[61] J.-G. Chung and K. K. Parhi, "Pipelining of lattice IIR digital niters," IEEE Trans-
actions on Signal Processing, vol. 42, pp. 751-761, April 1994.

[62] K. K. Parhi and D. G. Messerschmitt, "Static rate-optimal scheduling of iterative
data-flow programs via optimum unfolding," IEEE Transactions on Computers,
vol. 40, pp. 178-195, February 1991.

[63] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User's Guide, Release 2.25.
South San Francisco, CA: The Scientific Press, 1992.

[64] S. S. Bhattacharyya, J. T. Buck, and E. A. Lee, "A scheduling framework for
minimizing memory requirements of multirate DSP systems represented as dataflow
graphs," in Proceedings of IEEE VLSI Signal Processing Workshop, (Veldhoven, The
Netherlands), pp. 188-196, October 1993.

[65] R. Govindarajan and G. R. Gao, "A novel framework for multi-rate scheduling in
DSP applications," in Proceedings of IEEE Int. Conf. on Application-Specific Array
Processors, pp. 77-88, 1993.

[66] R. Govindarajan, G. R. Gao, and P. Desai, "Minimizing memory requirements in
rate-optimal schedules," in Proceedings of IEEE Int. Conf. on Application-Specific
Array Processors, (San Francisco, CA), pp. 75-86, August 1994.

[67] A. Chandrakasan, S. Sheng, and R. Brodersen, "Low-power CMOS digital design,"
IEEE Journal of Solid-State Circuits, vol. 27, pp. 473-484, April 1992.

[68] G. Goosens, J. Rabaey, J. Vandewalle, and H. De Man, "An efficient microcode
compiler for application specific DSP processors," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 9, pp. 925-937, September
1990.

[69] L. Lamport, "The parallel execution of DO loops," Communications of the ACM,
vol. 17, pp. 83-93, February 1974.

[70] K. K. Parhi and D. G. Messerschmitt, "Concurrent architectures for two-
dimensional recursive digital filtering," IEEE Transactions on Circuits and Systems,
vol. 36, pp. 813-829, June 1989.

[71] M. Winzker, K. Grüger, W. Gehrke, and P. Pirsch, "VLSI chip set for 2D HDTV
subband filtering with on-chip line memories," IEEE Journal of Solid-State Circuits,
vol. 28, pp. 1354-1361, December 1993.

[72] E. Patrick, D. Anderson, and F. Bechtel, "Mapping multidimensional space to one
dimension for computer output display," IEEE Transactions on Computers, vol. C-
17, pp. 949-953, October 1968.

[73] K. K. Parhi and T. Nishitani, "VLSI architectures for discrete wavelet transforms,"
IEEE Transactions on VLSI Systems, vol. 1, pp. 191-202, June 1993.

172

[74] C. Chakrabarti and M. Vishwanath, "Efficient realizations of the discrete and con-
tinuous wavelet transforms: Prom single chip implementations to mappings on SIMD
array computers," IEEE Transactions on Signal Processinq, vol. 43, DD 759-771
March 1995.

173

